Просмотр полной версии : *2470. Черные дыры
Elementy.ru
24.05.2014, 19:48
http://elementy.ru/lib/25531/25536
Черные дыры и структура пространства-времени
Хуан Малдасена (Juan Maldacena),
Институт высших исследований,
Школа естественных наук,
Принстон, Нью-Джерси, США
Английский оригинал Видеозапись Презентация лекции (pdf, 656 Кб)
1. Черные дыры
2. Черные дыры и квантовая механика
3. Разрешение загадок
4. Структура пространства-времени
Библиография
1. Черные дыры
Черные дыры — один из самых необыкновенных объектов, предсказываемых общей теорией относительности Эйнштейна. У черных дыр интересная история, поскольку они преподнесли теоретикам немало сюрпризов, приведших к лучшему пониманию природы пространства-времени.
Давайте начнем с теории всемирного тяготения Ньютона. Силу гравитационного притяжения мы испытываем прямо здесь, на поверхности земли. Если подбросить камень, он упадет под действием земного притяжения. А можно ли подбросить камень с такой скоростью, чтобы он на Землю не вернулся? Можно. Если запустить камень со скоростью выше второй космической скорости (около 11 км/с), он покинет гравитационное поле Земли. Эта «скорость выхода» зависит от массы и радиуса земного шара. Если бы Земля при ее нынешнем радиусе была массивнее или имела бы меньший радиус при ее нынешней массе, скорость выхода была бы выше. Возникает вопрос: что будет, если плотность и масса космического тела настолько велики, что скорость выхода из его гравитационного поля выше скорости света? Ответ: такое тело будет представляться внешнему наблюдателю абсолютно черным, поскольку свет его покинуть не может. Например, звезда с радиусом меньше, чем
где GN — постоянная Ньютона, а с — скорость света в вакууме, будет выглядеть абсолютно черной.
Для тех, кто не разбирается в формулах, приведу несколько примеров. Чтобы тело, масса которого равна массе Земли, превратилось в черную дыру, оно должно иметь радиус меньше сантиметра. Тело с массой Солнца должно сжаться до диаметра меньше километра. На это еще в конце XVIII века указал Пьер-Симон Лаплас, но тогда никто не придал этому особого значения.
С появлением в 1905 году специальной теории относительности у нас появилось понимание того факта, что скорость света в вакууме — не рядовая скорость. Это космический предел: ничто не может двигаться быстрее света. Теория относительности Эйнштейна также учит нас, что пространство и время тесно взаимосвязаны. Для наблюдателей, движущихся друг относительно друга, время течет с разной скоростью. Предположим, вы стоите на улице и смотрите на проезжающие машины. Для водителей машин время течет чуть медленнее, чем для вас, и несколько иначе. Предположим, вы видите, как два светофора в разных концах улицы одновременно переключаются на красный. Для водителей же они переключатся не одновременно. Это получается после того, как мы учтем время, которое требуется свету, чтобы пройти расстояние от светофора до наблюдателей. И для вас, и для водителей свет движется с одинаковой скоростью, но время для них течет медленнее. То есть, время относительно, а скорость света абсолютна. Это противоречит нашим интуитивным представлениям о мире, так как эффект этот на нас практически не сказывается, поскольку мы обычно путешествуем на скоростях, которые очень далеки от скорости света, а время измеряем не с абсолютной точностью. Однако в ускорителях элементарных частиц этот эффект наблюдается постоянно. При скоростях, близких к скорости света, частицы живут значительно дольше.
Пространство и время объединяются в единую концепцию пространства-времени. Время воспринимается по-разному двумя наблюдателями, движущимися друг относительно друга. Однако оба наблюдателя воспринимают одно и то же пространство-время. Имеются точные формулы, позволяющие нам связать наблюдения этих двух наблюдателей.
Теперь вернемся к гравитации. Она обладает очень важным свойством, которое открыл еще Галилей: все тела падают одинаково, если не учитывать сопротивление воздуха. В безвоздушном пространстве пушинка и камень упадут на землю одновременно. В случае действия других сил это не так. В электрическом поле заряженная частица будет двигаться иначе в случае изменения ее массы или заряда. В теории всемирного тяготения Ньютона причина, по которой все тела движутся под воздействием гравитационных сил одинаково, сводится к тому, что сила гравитационного притяжения пропорциональна массе тела. Иногда это называют «принципом эквивалентности».
Эйнштейн осознал, что теория Ньютона противоречит теории относительности, поскольку согласно ньютоновской теории гравитационное взаимодействие между телами передается мгновенно. В 1915 году Эйнштейн решил эту проблему таким образом, что из этого решения естественным путем вытекает и принцип эквивалентности. Свою новую концепцию Эйнштейн назвал общей теорией относительности. Он предположил, что гравитация возникает вследствие искривления пространства-времени. В искривленном пространстве-времени частицы движутся по кратчайшим траекториям. Изначально параллельные линии таких траекторий в искривленном пространстве-времени могут сближаться. Например, два земных меридиана на пересечении с экватором параллельны, однако по мере удаления от него они сближаются и, в конечном итоге, пересекаются в точке Северного полюса. Конфигурация пространства-времени зависит от материи, перемещающейся в нем. Общая теория относительности подразумевает, что темп времени зависит от гравитационного поля. Следовательно, два жильца одного дома, обитающие на первом и последнем этажах, воспринимают ход времени по-разному. Для обитателя первого этажа время течет чуть медленнее, чем для обитателя верхнего этажа. Для земных зданий этот эффект пренебрежимо мал и составляет порядка 10–15 секунды за секунду. Главное, что нам нужно усвоить, это то, что массивные тела стягивают пространство-время на себя. В частности, вблизи массивных объектов время течет медленнее, чем на удалении от них.
Физики всегда стремятся сначала разобрать простейшие ситуации. Поэтому в 1916 году, вскоре после открытия общей теории относительности, молодой немецкий физик Карл Шварцшильд (Karl Schwarzschield) нашел простейшее сферически симметричное решение уравнений Эйнштейна. Это решения описывает частный случай искривления геометрии пространства-времени под воздействием точечной массы. Однако, вместо геометрии, давайте обратим внимание на другой их аспект: темп хода стационарных часов. Часы на поверхности Солнца идут на одну миллионную медленнее, чем удаленные от Солнца часы. Часы на поверхности нейтронной звезды идут со скоростью 70% от скорости часов вдали от нее. Здесь налицо уже весьма значительный эффект расхождения во времени. Так вот, решение Шварцшильда подразумевает, что часы в «центре» точечной массы вообще остановились бы. Поначалу физики сочли это «нефизическим» парадоксом, следствием слишком упрощенного анализа.
Дальнейшие расчеты показали, однако, что речь в решении Шварцшильда идет даже не о некоем условном «центре», а о целой идеальной сфере. Путешественник, пересекающий границы этой сферы и попадающий внутрь нее, не испытывает ничего странного или необычного — для него время течет по-прежнему. А вот для сторонних наблюдателей за пределами этой сферы, принимающих сигналы от падающего внутрь сферы путешественника, любые сигналы от него будут неуклонно замедляться, пока не исчезнут, как таковые, при пересечении им поверхности сферы. Поверхность, на которой стационарные часы замедляются до нуля, принято называть сферой Шварцшильда или «горизонтом». Возврата из-за горизонта нет. Наблюдатель, пересекший его и попавший внутрь сферы, обратно не выберется и будет неизбежно поглощен сингулярностью в ее центре. «Сингулярность» — это область сверхвысокого искривления пространства-времени, и путешественник в ней попросту исчезнет и будет раздавлен огромной гравитационной силой. Выясняется, что размер черной дыры согласно теории Эйнштейна описывается все той же формулой, предложенной еще Лапласом в рамках механики Ньютона, однако ее физическая интерпретация в корне меняется.
Черные дыры могут образовываться в результате астрофизических процессов, когда у звезд с массой, на порядок превышающей массу Солнца, кончается термоядерное топливо, и они обрушиваются внутрь себя под действием гравитационных сил. Имеется достаточно данных наблюдений, свидетельствующих о реальности существования таких черных дыр во Вселенной. С астрофизической точки зрения обнаруженные черные дыры подразделяются на две категории. Первый тип — это черные дыры, образовавшиеся в результате коллапса массивных звезд и обладающие соответствующей массой. Поскольку черные дыры кажутся нам реально черными, наблюдать их крайне сложно. Если посчастливится, мы можем увидеть лишь шлейф газа, затягиваемого в черную дыру. Разгоняясь при падении, газ разогревается и испускает характерное излучение, которое мы только и можем обнаружить. Источником газа при этом является другая звезда, образующая парную систему с черной дырой и обращающаяся вместе с ней вокруг центра масс двойной звездной системы. Иными словами, сначала мы имели обычную двойную звезду, затем одна из звезд в результате гравитационного коллапса превратилась в черную дыру. После этого черная дыра начинает засасывать газ с поверхности горячей звезды. Второй тип — это гораздо более массивные черные дыры в центрах галактик. Их масса превышает массу Солнца в миллиарды раз. Опять же, падая на такие черные дыры, вещество разогревается и испускает характерное излучение, которое со временем доходит до Земли, его-то мы и можем обнаружить. Предполагается, что все крупные галактики, включая нашу, имеют в центре свою черную дыру.
Однако основным предметом нашего разговора является не астрофизика черных дыр, а исследование их влияния на структуру пространства-времени.
Согласно теории Эйнштейна черная дыра представляет собой бездонный провал в пространстве-времени, падение в который необратимо. Что упало, то пропало в черной дыре навеки.
У черных дыр очень интересные свойства. После коллапса звезды в черную дыру ее свойства будут зависеть только от двух параметров: массы и углового момента вращения. То есть, черные дыры представляют собой универсальные объекты, то есть, их свойства не зависят от свойств вещества, из которого они образованы. При любом химическом составе вещества исходной звезды свойства черной дыры будут одними и теми же. То есть, черные дыры подчиняются только законам теории гравитации — и никаким иным.
Другое любопытное свойство черных дыр заключается в следующем: предположим, вы наблюдаете процесс, в котором участвует черная дыра. Например, можно рассмотреть процесс столкновения двух черных дыр. В результате из двух черных дыр образуется одна более массивная. Этот процесс может сопровождаться излучением гравитационных волн, и уже построены детекторы с целью их обнаружения и измерения. Процесс этот теоретически просчитать весьма непросто, для этого нужно решить сложную систему дифференциальных уравнений. Однако имеются и простые теоретические результаты. Площадь сферы Шварцшильда получившейся черной дыры всегда больше суммы площадей поверхностей двух исходных черных дыр. То есть, при слиянии черных дыр площадь их поверхности растет быстрее массы. Это так называемая «теорема площадей», она была доказана Стивеном Хокингом (Steven Hawking) в 1970 году.
Содержание темы :
01 страница
#01. Elementy.ru.Черные дыры и структура пространства-времени
#02. Elementy.ru. 2. Черные дыры и квантовая механика
#03. Elementy.ru. 3. Разрешение загадок
#04. Elementy.ru. 4. Структура пространства-времени
#05. Газета.Ru. Черных дыр на свете больше
#06. Newsland. NASA показало, как черная дыра "ест" звезду
#07. Павел Котляр. Черные дыры, каких раньше не видели
#08. Ольга Сильченко. Черные дыры в центрах галактик
#09. Иван Крылов. Дыра в 17 миллиардов Солнц
#10. Серге́й Бори́сович Попо́в. «Действительно что-то узнать о черной дыре можно, только прыгнув в нее»
02 страница
#11. Эмиль Ахмедов. FAQ: Черные дыры
#12. Эмиль Ахмедов. Черные дыры
#13. Андрей Борисов. Вот запара
#14. Андрей Борисов. Горячая дыра
#15. Андрей Борисов. Вселенский компьютер
#16. Серге́й Бори́сович Попо́в. Гравитационные волны
#17. Андрей Борисов. Спорная дыра
#18. Дмитрий Гусев. Ученые нашли черную дыру, создающую звезды
#19. Лентa.Ru. Надуло
#20. Лентa.Ru. Тяжелый случай
03 страница
#21. Самир Д. Матур. Новый взгляд на информационный парадокс черных дыр
#22. Серге́й Бори́сович Попо́в. Гравитационные волны и черные дыры
#23. Максим Руссо. Впервые увидеть давнего знакомца
#24.
#25.
#26.
#27.
#28.
#29.
#30.
Elementy.ru
24.05.2014, 19:49
http://elementy.ru/lib/25531/25537
Следующий сюрприз ждал ученых, когда они занялись изучением квантовых эффектов. В квантовой механике вакуум — это не просто полное отсутствие элементарных частиц. Вакуум — это весьма интересное состояние пространства, в котором постоянно возникают и тут же аннигилируют пары «частица-античастица». В спрямленном пространстве чистого выхода в виде возникших из вакуума частиц мы не имеем в силу закона сохранения энергии. То есть, фактически, частицы взаимно аннигилируются, даже не успев родиться. В 1974 году всё тот же Стивен Хокинг доказал, что вблизи горизонта это не так. Имеется ненулевая вероятность рождения пары частиц, сразу же оказывающихся по разные стороны бесконечно тонкого горизонта, причем закон сохранения энергии не нарушается, поскольку частица снаружи горизонта обладает, с точки зрения стороннего наблюдателя, положительной энергией, а частица внутри горизонта — отрицательной (при этом с точки зрения наблюдателя внутри сферы Шварцшильда всё выглядит с точностью до наоборот). Тепловое распределение испускаемых частиц соответствует температуре, которая обратно пропорциональна массе черной дыры. Даже для черных дыр звездной массы эта температура настолько близка к абсолютному нулю, что этот эффект зарегистрировать фактически невозможно. Однако, если черная дыра достаточно долго пробыла бы в полном вакууме, то за счёт эффекта Хокинга она постепенно бы теряла массу через излучение рождающихся на поверхности частиц. Теряя массу, черная дыра разогревается. Черная дыра с массой порядка 1019 кг (масса большого горного хребта) разогреется до температуры в несколько тысяч градусов и будет вылядеть белой. Однако мощность такого излучения будет составлять не больше милливатта, и зарегистрировать его по-прежнему практически невозможно. Но, чем меньше становится масса изолированной черной дыры, тем выше становится её температура, и тем быстрее она «испаряется», пока, вероятно, не испарится полностью. Фактически, если бы нам удалось сжать до плотности черной дыры всего несколько килограммов вещества (на практике нам этого, конечно, не дано!), такая черная дыра испарилась бы меньше, чем за одну миллисекунду, а энергии при этом выделилось бы больше, чем при взрыве водородной бомбы.
Наличие такого теплового излучения у черных дыр сразу создает две головоломки: 1) причины повышения энтропии черной дыры и 2) информационный парадокс. Попробую объяснить их смысл подробнее.
2.1. Энтропия черных дыр
В классической физике тепловые свойства вещества обусловлены движением составляющих его материальных частиц. Например, температура воздуха связана со среднеквадратичной скоростью теплового движения его молекул. Родственное температуре понятие называется энтропия. Энтропия дает количественное выражение степени хаотичности движения составляющих системы. Законы термодинамики позволяют связать энтропию с температурой, массой и объемом, благодаря чему её можно рассчитать, не зная микроскопических деталей строения системы. Хокинг и Бекенштейн (Bekenstein) показали, что энтропия черной дыры пропорциональна площади её горизонта, деленной на квадрат т. н. гравитационной длины Планка lPlanck = 10–33 см. Для черной дыры макроскопических размеров значение энтропии получается просто чудовищным. Однако законов термодинамики в данном случае, похоже, ничто не отменяет, и они продолжают действовать даже с учетом, по сути, бесконечного «вклада» невидимых недр черной дыры в её энтропию. Результаты эти крайне озадачивают, прежде всего, потому, что совершенно не ясно, из чего «складывается» энтропия черной дыры, поскольку никаких явных компонентов, которые своим хаотичным движением могли бы способствовать беспредельному увеличению энтропии, внутри черной дыры нет. По крайней мере, мы не можем усмотреть их «снаружи», поскольку нам видится только по-настоящему «черная» дыра — бездонный провал в ткани пространства-времени, и чтобы понять, из каких «компонентов» она реально состоит, необходимо найти какие-то самые фундаментальные составные элементы, на которые можно разложить саму геометрию пространства-времени.
Крайне интересно еще и то, что энтропия черной дыры пропорциональна её площади (квадрату радиуса), а не объему (кубу радиуса). В начале 1990-х годов Хофт ('t Hooft) и Зюскинд (Susskind) предположили, что в теории, объединяющей квантовую механику и гравитацию, число элементарных компонентов, необходимых для исчерпывающего описания системы, пропорционально площади окружающей поверхности, в которую она заключена. А это означает, что структура пространства-времени в корне отличается от структуры твёрдого тела, в котором число таких элементарных компонентов (материальных точек или атомов) возрастает пропорционально её объему, а отнюдь не площади. С практической точки зрения такое ограничение энтропии поверхностью сферы не кажется чересчур принципиальным, однако, с теоретической точки зрения, оно приводит к коренному изменению представлений о мире, поскольку оказывается возможным описать замкнутую пространственно-временную область исключительно по поведению компонентов, расположенных на её внешней границе.
2.2. Информационный парадокс
Мы уже отмечали, что происхождение чёрной дыры может быть различным, однако свойства самой дыры от этого не меняются. Обычно в физике при фазовом переходе или ином преобразовании от исходного состояния вещества зависит и конечное состояние вещества. Иногда различия едва заметны, но они присутствуют. Позвольте привести пример. Возьмём две абсолютно одинаковые тарелки, напишем на одной из них букву А, а на другой — букву Б, после чего разобьём ту и другую на мелкие кусочки. На первый взгляд результат идентичен — две груды мелких осколков на полу. Однако, тщательно изучив обе кучи битого фарфора, мы рано или поздно сумеем разобраться, на какой из исходных тарелок какая буква значилась.
А теперь предположим, что одну из этих тарелок мы бросили в чёрную дыру. Судя по всему, что мы знаем на сегодняшний день, рано или поздно всё вещество этой черной дыры вместе с остатками тарелки испарится в виде излучения Хокинга. Согласно теории Хокинга это будет чисто тепловое излучение, не зависящее от исходного состояния ни самой черной дыры, ни, тем более, попавшей в неё тарелки. То есть, мы, судя по всему, никогда не восстановим информацию о том, какая буква была изначально написана на тарелке.
На первый взгляд это кажется чистой воды академической казуистикой. Мы же постоянно что-то забываем в обычной жизни, и нам это не кажется противоестественным! Однако проблема-то на самом деле крайне серьезна, поскольку квантовая механика утверждает, что законы, управляющие этим процессом, таковы, что подобная информация должна быть в принципе восстановима. Поэтому решение проблемы сохранения информации является необходимостью с точки зрения построения последовательной и внутренне непротиворечивой квантовой теории гравитации. Информационный парадокс обязан быть разрешен в рамках такой теории.
Многие видные физики, включая С. Хокинга, полагали, что это невозможно. Они считали, что всякая информация внутри черной дыры уничтожается бесследно, и, как следствие, предлагали отказаться и от идеи Великого объединения теории взаимодействий в рамках квантово-механических представлений, и от квантовой механики, как таковой, поскольку она постулирует невыполнимый принцип сохранения информации.
Однако дальнейшее осмысление этого вопроса привело к интересным последствиям, а именно, к развитию теории струн в физике элементарных частиц.
Elementy.ru
24.05.2014, 19:50
http://elementy.ru/lib/25531/25538
3.1. Теория струн
Квантовая механика и гравитационная теория в рамках общей теории относительности вообще уживаются между собой крайне плохо. С практической точки зрения нам в повседневной жизни квантовая теория гравитационного взаимодействия, по большому счёту, не нужна, поскольку все явления, с которыми мы прямо или косвенно сталкиваемся, описываются либо гравитационными эффектами, на фоне которых квантово-механические эффекты никак не проявляются, либо наоборот. С другой стороны, если нас интересует происхождение Вселенной и процессы, происходившие в первые мгновения после Большого Взрыва, универсальная и непротиворечивая теория нам всё-таки нужна. В самом начале квантово-механические и гравитационные взаимодействия были в равной мере значимы. Именно это и послужило одной из главных мотивировок к разработке квантовой теории гравитации.
Такой теорией стала теория струн. В её рамках удалось, наконец, объединить квантово-механические и гравитационные взаимодействия. Мы не знаем, верна ли эта теория, но лучшей кандидатуры на роль универсальной теории на сегодня не существует. Происхождение названия «теория струн» в рамках нашего обсуждения не столь уж и важно. Главное для нас — уяснить, что это квантовая теория гравитации.
3.2. Чёрные дыры в рамках теории струн
В рамках теории струн можно исследовать внутреннее строение черных дыр. В особых случаях можно даже составить описание микроструктуры черной дыры. По техническим причинам проще всего понять устройство черных дыр, живущих в пространственно-временном континууме постоянной отрицательной кривизны. Такие пространственно-временные континуумы представляют собой простейшее обобщение обычного спрямленного пространства. Кривизна спрямленного пространства равна нулю, и его двумерным аналогом является плоскость. Двумерным аналогом пространства с положительной кривизной является поверхность сферы. Двумерная модель («карта») гиперболического пространства с отрицательной кривизной представлена на рисунке 1. Аналогичным образом можно представить себе и пространственно-временные континуумы, обладающие нулевой, положительной или отрицательной кривизной. Пространственно-временные континуумы с отрицательной кривизной, по сути, имеют замкнутую границу в бесконечности. Частица может достигнуть бесконечно удаленной границы и вернуться обратно за конечное время, и это действительно возможно, но лишь по причине неоднородности течения времени — его ход убыстряется по мере удаления от исходной точки.
В 1997 году я рискнул предположить, что все гравитационные физические взаимодействия в таком пространстве можно описать через теорию взаимодействия обычных частиц, расположенных на его границе. В дальнейшем эта гипотеза была детально разработана С. Габсером (S. Gubser), И. Клебановым, А. Поляковым, Э. Виттеном (E. Witten) и многими другими учеными. Детали этой теории довольно сложны, однако её ключевой момент состоит в следующем: теория гравитации, глубинной динамики которой мы до конца не понимаем, сводится к теории взаимодействия обычных частиц на поверхности сферы, которую мы, как раз, понимаем. Еще важнее то, что такая пограничная теория гравитации подчиняется принципам квантовой механики.
Термодинамическое состояние черной дыры в рамках этой модели описывается исключительно температурой частиц в её граничном слое. Соответственно, и энтропия чёрной дыры равняется лишь суммарной энтропии этих частиц. Сами же пограничные частицы как раз и являются «элементарными квантами» пространственно-временной геометрии.
Рисунок Морица Эшера
Рисунок 1. На рисунке Эшера представлена попытка воспроизвести геометрию гиперболического пространства. Показана его проекция на диск. Все изображенные фигуры геометрически конгруэнтны между собой, то есть, в исходном гиперболическом пространстве их геометрические размеры равны, однако из-за искажающего эффекта его проекции на диск, они кажутся уменьшающимися по мере приближения к краю диска. На самом же деле граница диска равноудалена на бесконечное расстояние от любой точки внутри диска. Аналогичное искажение мы наблюдаем на географических картах в стандартной планиметрической проекции. Приполярные области кажутся непропорционально увеличенными. В этой проекции гиперболического пространства мы наблюдаем противоположный эффект. Размеры гиперболического пространства бесконечны, однако на рисунке оно выглядит конечным, поскольку область около обода показана в многократно уменьшенном масштабе.
http://elementy.ru/images/eltpub/escher_300.gif
Рисунок 1. На рисунке Эшера представлена попытка воспроизвести геометрию гиперболического пространства. Показана его проекция на диск. Все изображенные фигуры геометрически конгруэнтны между собой, то есть, в исходном гиперболическом пространстве их геометрические размеры равны, однако из-за искажающего эффекта его проекции на диск, они кажутся уменьшающимися по мере приближения к краю диска. На самом же деле граница диска равноудалена на бесконечное расстояние от любой точки внутри диска. Аналогичное искажение мы наблюдаем на географических картах в стандартной планиметрической проекции. Приполярные области кажутся непропорционально увеличенными. В этой проекции гиперболического пространства мы наблюдаем противоположный эффект. Размеры гиперболического пространства бесконечны, однако на рисунке оно выглядит конечным, поскольку область около обода показана в многократно уменьшенном масштабе.
Elementy.ru
24.05.2014, 19:51
http://elementy.ru/lib/25531/25539
Все эти идеи глубоко затрагивают наши представления о структуре пространства-времени. Обратите внимание, что начали мы с теории поведения частиц на сферической плоскости, ограничивающей черную дыру, то есть имели дело с 2+1 пространственно-временными измерениями, а закончили теорией гравитации для 3+1 измерений. Получается, что одно пространственное измерение взялось буквально ниоткуда! Однако оно взялось не из неоткуда, а из взаимодействий между частицами в 2+1 измерениях.
А это значит, что пространство-время — не самое фундаментальное понятие. Оно порождается более фундаментальными понятиями, и его законы вступают в силу лишь после некоторого удаления наблюдателя от объекта изучения. Позвольте привести аналогию. Предположим, мы наблюдаем поверхность озера. Мы видим волны, мы видим жуков-плавунцов, бегающих по поверхности воды и т. п. Поверхность озера представляется нам ясной и вполне описываемой. Действительно, мы даже можем написать уравнения, описывающие распространение волн, силы поверхностного натяжения и т. д. Теперь, предположим, нам захотелось изучить структуру поверхности воды более пристально. Под микроскопом мы увидим, что поверхность воды наблюдается не столь отчетливо, как раньше. А уж если мы посмотрим на неё в электронный микроскоп, то мы и вовсе увидим, как с поверхности воды беспрестанно срываются испаряющиеся молекулы, а их место занимают конденсирующиеся молекулы воды из воздуха, и поймём, что граница между водой и воздухом носит чисто условный характер, поскольку точно определить её местоположение невозможно. При ближайшем рассмотрении оказывается, что мы недостаточно чётко дали определение поверхности воды, что нужно, оказывается, каким-то образом включить в него явления, происходящие на уровне отдельных молекул. В точности так же и определение пространства-времени при рассмотрении последнего в самых микроскопических масштабах утрачивает былую определенность. И выясняется, что на этом уровне главной является концепция слоя пограничных частиц, а само пространство-время — суть проявление их совокупных свойств.
Если бы мы только жили в пространстве-времени с отрицательной кривизной, то для понимания всего происходящего в нашей Вселенной достаточно было бы создать адекватную теорию пограничного слоя, описывающую поведение частиц в нём...
Интересно, однако, что, судя по всем имеющимся данным, в макроскопических масштабах пространство-время нашей Вселенной имеет, увы, положительную кривизну. На текущий момент нам неизвестно, существует ли возможность для подобного описания гравитационных полей в пространстве-времени с положительной кривизной. Такое описание, если бы оно существовало и если бы нам удалось его найти, решило бы проблему сингулярности Большого взрыва.
Газета.Ru
18.09.2014, 18:16
http://www.gazeta.ru/science/2014/09/18_a_6220197.shtml
Российский ученый и его зарубежные коллеги выяснили, что сверхмассивные черные дыры живут не только в больших галактиках
http://img.gazeta.ru/files3/209/6220209/m60-1-pic510-510x340-20850.jpg
Галактика M60-UCD1, изображение в рентгене (Chandra) и оптике (Hubble) Галактика M60-UCD1, изображение в рентгене (Chandra) и оптике (Hubble)
Фотография: NASA
18.09.2014, 11:52 | Григорий Колпаков, Николай Подорванюк
Сверхмассивных черных дыр во Вселенной может быть больше, чем считается: выяснилось, что они живут не только в больших галактиках, как наш Млечный Путь, но и в маленьких. Одну такую «квартирку» для черной дыры — галактику M60-UCD1 — нашла международная группа астрономов, в которую вошел ученый из России.
О своем открытии астрономы рассказали в журнале Nature.
Сверхкомпактные карликовые галактики относятся к самым плотным звездным системам во Вселенной. Сейчас их известно около сотни. К ним принадлежит галактика M60-UCD1, одна из самых крупных галактик такого типа, которая находится от Земли на расстоянии 54 млн световых лет и представляет собой спутник галактики — М60.
Группа астрономов заинтересовалась этой мини-галактикой еще в прошлом году, выяснив, что она обладает аномально высокой плотностью и вдобавок имеет внутри источник гамма-излучения. В этом году они проанализировали свои наблюдения на телескопе Geminy North, расположенном на Гавайских островах, и снимки космического телескопа «Хаббл».
В работе принимал участие российский исследователь — ведущий научный сотрудник Государственного астрономического института имени П.К. Штернберга Московского государственного университета Игорь Чилингарян, который также работает в Гарвард-Смитсоновском астрофизическом центре.
Как сообщил Чилингарян «Газете.Ru», в данной работе он проводил независимый анализ данных. «Поскольку журнал Nature имеет неоднозначную репутацию в астрономическом сообществе, я хотел перепроверить результат, который публикуется нашей группой, и провел анализ тех же самых данных с помощью других моделей, а именно теоретических спектров звездных атмосфер. Этот анализ полностью подтвердил то, что было проведено с помощью спектров реальных звезд, полученных 18 лет назад».
По словам российского ученого, статья была написана «невероятно быстро»: работа была направлена в редакцию журнала Nature, притом что она основана на наблюдениях, полученных в конце мая.
Авторы статьи выяснили, что звезды в этой галактике-карлике движутся со скоростями порядка 100 км/сек, а это для простых звездных скоплений слишком быстро и может быть объяснено только наличием крупной черной дыры.
Ученые также рассчитали ее массу: 21 млн Солнц, в пять раз больше, чем масса центральной черной дыры в нашей галактике. Причем если последняя составляет лишь сотую долю процента от массы всей галактики, то в M60-UCD1, с ее общей массой в 140 млн солнечных масс, масса черной дыры занимает уже 15%.
В столь малых галактиках черные дыры такого масштаба родиться не могут теоретически.
Ученые считают, что M60-UCD1 представляет собой остатки некогда очень крупной эллиптической галактики, насчитывавшей, возможно, около 10 млрд звезд, эта галактика примерно 10 млрд лет назад встретилась с еще более крупной М60, которая обобрала ее, сорвав с нее своей гравитацией большую часть звездного материала.
И скорее всего, даже те остатки былого величия, которые окружают осиротевшую сверхмассивную черную дыру, тоже обречены. Пройдет время, и M60-UCD1 полностью будет поглощена могущественным соседом, а черная дыра сольется с его черной дырой, которая более чем в тысячу раз массивнее нашей. Когда это произойдет — неизвестно, поскольку неизвестна траектория карликовой галактики вокруг М60.
Но, похоже, что по астрономическим меркам ждать осталось недолго:
M60-UCD1 вращается по орбите, которая отстоит от центра М60 всего на 22 тыс. световых лет, а это даже ближе, чем расстояние, отделяющее Солнце от центра Млечного Пути.
По словам ведущего автора статьи Энила Сэта из Университета Юты, подобные сверхмассивные черные дыры могут находиться и внутри других сверхкомпактных карликовых галактик, а это значит, что их намного больше, чем считалось до сих пор.
Просто «жилищные условия» у них намного хуже.
«Полученный результат является ярким и интересным, а главная спекуляция заключается в том, что если все яркие ультракомпактные карликовые галактики содержат подобные черные дыры, то общее количество сверхмассивных черных дыр может быть недооценено чуть ли не в два раза», — сообщил Игорь Чилингарян.
Newsland
23.10.2015, 21:32
http://newsland.com/news/detail/id/1628837/
Сегодня в 18:25ПOЛлукс981401
http://static.newsland.com/news_images/1628/big_1628837.jpg
Американское космическое агентство NASA опубликовало поучительное видео: ни в коем случае не стоит приближаться к черной дыре. Ее гравитационная сила способна разорвать любую, даже самую большую звезду. А тело астронавта и вовсе вытянет в длинное «спагетти», перед тем как расщепит на субатомные частицы, вспоминает теории экспертов The Verge.
На видео специалисты постарались воссоздать реальный процесс, который наблюдали с трех разных рентгеновских телескопов. Черная дыра, которая находится в центре галактики на расстоянии в 290 млн световых лет от Земли, пожирала гигантскую звезду. Это событие в астрономической среде получило собственное кодовое название ASASSN-14li.
hu6hIhW00Fk
Увидеть его ученым удалось в тот момент, когда ошметки звезды, притянутые черной дырой, нагрелись до нескольких миллионов градусов и их можно было рассмотреть на снимках рентгеновских телескопов.
Виталий Олехнович
Источник: tech.onliner.by
Павел Котляр
23.01.2016, 20:42
http://www.gazeta.ru/science/2016/01/23_a_8035853.shtml
Российский астроном нашел загадочные черные дыры с помощью программистов-волонтеров
23.01.2016, 11:08
http://img.gazeta.ru/files3/889/8035889/56025-pic905-895x505-18595.jpg
Первый известный кандидат в черные дыры промежуточной массы — HLX-1
NASA, ESA, S.Farrell (Sydney Institute for Astronomy, University of Sydney)
Сразу 98 кандидатов в черные дыры — да не простые, уже хорошо известные ученым, а загадочные, промежуточной массы — найдены учеными во главе с россиянином Иваном Золотухиным. В работе активное участие приняли работающие в ведущих IT-компаниях России программисты, интересующиеся наукой.
Черных дыр уже как собак нерезаных
Термин «черная дыра» был введен в середине XX века физиком-теоретиком Джоном Уиллером. Этим словосочетанием называют сверхмассивные релятивистские объекты, невидимые ни в одном диапазоне электромагнитных волн, которые выдают себя, однако, множеством астрофизических эффектов.
Из наблюдений ученым известны черные дыры двух основных типов: сверхмассивные и черные дыры звездных масс.
«Я жду, что в ближайшее десятилетие будет получена Нобелевская премия за открытие черных дыр, — говорил шесть лет назад в интервью «Газете.Ru» академик РАН Анатолий Черепащук. — Мы к этому подходим все ближе и ближе. Во-первых, этих черных дыр уже как собак нерезаных. Звездных черных дыр — 23 штуки, для них измерены массы, даны ограничения на размеры. А сверхмассивных черных дыр в ядрах галактик уже многие тысячи».
Считается, что черные дыры звездных масс, число которых сейчас уже не 23, как в 2009 году, а сильно больше, образуются в конце эволюции массивных звезд, когда, раздувшись, они сбрасывают внешние слои и сжимаются внутрь под действием собственной гравитации. Теоретические расчеты налагают ограничения на массу таких дыр в 5–50 масс Солнца.
Куда менее ясно, откуда берутся сверхмассивные черные дыры, сидящие в центре большинства галактик, масса которых может достигать миллиардов масс Солнца.
Дело в том, что квазары — активные ядра галактик со сверхмассивными черными дырами массой в миллиарды масс Солнца — наблюдаются астрономами на больших красных смещениях. Это значит, что такие гиганты существовали уже в первые сотни миллионов лет после Большого взрыва. «Именно поэтому астрономы ищут черные дыры промежуточных масс, поскольку за 700 млн лет без них невозможно сделать черную дыру в миллиард масс Солнца», — пояснил Иван Золотухин.
Сто черных дыр на одну галактику
Считается, что звезды первых поколений не содержали металлов и потому могли иметь массы в сотни масс Солнца, а в конце эволюции создавать черные дыры куда более массивные, чем наблюдаемые сегодня. Эти черные дыры затем слипались друг с другом, образуя дыры массой в тысячи масс Солнца, а дальнейшее поглощение галактик друг другом и аккреция вещества приводили к образованию сверхмассивных черных дыр. Расчеты моделей иерархического образования галактик показали, что если это было так, то до наших дней должно сохраниться немного тех самых дыр промежуточных масс, которые так ищут астрономы.
Немного — это около ста штук на галактику размером с наш Млечный Путь.
При этом летать они должны где-то высоко над плоскостью галактик, так как, слипаясь, черные дыры приобретают огромный импульс, способный порой их вышвырнуть из галактики. Примерно десять лет назад искать такие дыры (массой в тысячи солнечных) начали среди тяжелых дыр звездных масс и легких сверхмассивных, но ничего легче 500 тыс. масс Солнца найти не удалось.
Однако в 2009 году вышла статья астрономов из Тулузы, которые, занимаясь поиском нейтронных звезд в нашей галактике, совершенно случайно нашли яркий рентгеновский источник рядом с галактикой, расположенной расстоянии 100 мегапарсек от Земли. Оценка светимости показала, что масса объекта составляет около 10 тыс. солнечных масс. Светит он, скорее всего, за счет перетекания вещества на черную дыру с одной-единственной звезды. Уникальный объект получил название HLX-1 (Hyper-Luminous X-ray source 1), сейчас это единственный надежный кандидат в черные дыры промежуточной массы. Многие астрономы были уверены, что такой объект уникален и подобных ему найдено не будет.
Однако они упускали из виду, что объект был найден случайно, притом в каталоге источников, покрывающем всего 1% неба.
«Поэтому я считал, что таких объектов должно быть гораздо больше, и мы предложили метод их массового поиска», — пояснил Золотухин. Идея заключается в сопоставлении объектов из массового обзора красных смещений галактик (SDSS) с объектами из каталога рентгеновских источников. «Я предложил поискать в окрестностях миллионов галактик рентгеновские объекты со светимостью больше определенной величины», — пояснил автор.
Волонтеры-программисты помогли астрономам
Применив разработанный алгоритм к обоим каталогам, астрономы смогли насчитать 98 объектов, из которых минимум 16 должны быть связаны со своими галактиками. «Это шикарные кандидаты в черные дыры промежуточных масс. В работе впервые показывается, что новый гипотетический тип черных дыр — черные дыры промежуточных масс (с массами от 100 до 100 тыс. масс Солнца) — не просто существует, а существует в виде популяции, то есть эти объекты не являются уникальными, их много», — пояснил автор работы, опубликованной в журнале The Astrophysical Journal.
В работе использовались методы Виртуальной обсерватории: все выводы были получены исключительно с использованием публично доступных данных и, следовательно, могут быть проверены с любого компьютера, подключенного к интернету.
Кроме того, в работе активно использовался новый сайт для доступа к данным обсерватории XMM-Newton. «Уникальность этого веб-приложения заключается в том, что впервые в международной фундаментальной науке такой сложный проект сделан специально для ученых исключительно силами волонтеров — высококлассных программистов, которые, работая в лучших IT-компаниях России, свое свободное время посвящали данному веб-сайту, — это Алексей Сергеев, Аскар Тимиргазин и Максим Чернышов, — пояснил Иван Золотухин. — Я и многие мои коллеги до сих пор находимся под большим впечатлением от их работы. Астрономы всего мира теперь могут пользоваться уникальными возможностями сайта, а многие открытия теперь можно делать прямо онлайн!» По словам Золотухина, нынешняя работа открывает серию исследований, основанных на этом сайте. «Важно, что благодаря простому и понятному дизайну специфическими рентгеновскими данными теперь могут пользоваться ученые из других отраслей науки», — отмечает ученый.
Данное исследование, по сути, открывает возможность для массового поиска черных дыр промежуточных масс. Поскольку в представленной выборке кандидатов должно содержаться больше десятка таких объектов, ожидается, что в ближайшие годы они будут надежно подтверждены спектральными оптическими наблюдениями. Искать их в ближайшее время планируется и на шестиметровом телескопе БТА Специальной астрофизической обсерватории.
«Если найдется хотя бы одно подтверждение, это будет статья в Nature, астрономы тотчас же кинутся исследовать эти 98 объектов», — считает автор работы.
Найденные кандидаты находятся всего в 2% неба, поэтому астрономы надеются на запуск в 2017 году российско-немецкого космического телескопа «Спектр-РГ». С помощью инструмента будет получен глубокий рентгеновский обзор неба, в котором ученый надеется найти сотни объектов, подобных HLX-1.
Ольга Сильченко
07.04.2016, 11:57
http://postnauka.ru/video/57338
Астрофизик об открытии сверхмассивной черной дыры в туманности Андромеды, исследованиях Джона Корменди и темных гравитирующих телах
08.01.2016
W0QJJQqD7UQ
Черные дыры — это первоначально было совершенно теоретическое понятие. Оно вышло целиком из теории, и теоретическое представление о черных дырах предполагало массы черных дыр, соизмеримые с массами массивных звезд. То есть черная дыра — это естественная конечная стадия эволюции массивной звезды: массивная звезда выгорает в центре, ее перестает распирать давление излучения, и если масса достаточно велика, если гравитация такой звезды достаточно велика, то внешние слои звезды будут падать на центр, она коллапсирует, и формируется черная дыра звездной массы.
Черная дыра — это гравитирующее тело. В принципе она может ничего не излучать. Если нет топлива, если нет аккреции на черную дыру, она может быть совершенно темной и невидимой, ничего не излучать, но гравитировать она будет всегда. Эффект гравитации — это то, что позволяет обнаруживать черные дыры, даже если они не светят.
Черные дыры в квазарах или активных ядрах светят. И там предположение о присутствии черной дыры было сделано именно потому, что излучение было уж очень мощное. Но самое интересное, что большинство черных дыр — не звездных масс, а сверхмассивных черных дыр — совсем ничего не излучают, их нашли именно по эффекту гравитации.
Опять же начало этой истории было очень грустным. Джон Корменди — очень умный, очень талантливый исследователь — всегда был немножко одиночкой. И он опубликовал статью, что в центре туманности Андромеды он измерил такое быстрое вращение звезд и такие высокие хаотические скорости движения звезд именно в самом центре туманности Андромеды, что там должна быть сосредоточена гравитирующая масса, которая на порядки больше, чем масса тех звезд, которые мы видим в центре туманности Андромеды. Он посчитал эту массу, она оказалась равна примерно 30 миллионам солнечных масс, и он сказал, что это должна быть сверхмассивная черная дыра.
В 1992 году я присутствовала на симпозиуме Международного астрономического союза в городе Генте, где Джона Корменди со всех сторон опровергали. Там была талантливая молодежь. Ганс-Вальтер Рикс сейчас директор Института Макса Планка, а тогда он был аспирантом. И вот компания молодежи во главе с Гансом-Вальтером Риксом очень сильно критиковала работы Джона Корменди, говорила, что динамические модели, с помощью которых он из своих наблюдательных данных посчитал массу центрального гравитирующего тела, примитивны, они наверняка неприложимы к реальной туманности Андромеды и что если взять более изощренную динамическую модель, то, как говорится, черная дыра рассасывается — можно обойтись без сверхмассивной черной дыры в центре туманности Андромеды. Можно придумать такие движения, такое распределение гравитационного потенциала в центре галактики, что звезды будут двигаться именно с такими наблюдательными характеристиками, но вовсе не отслеживать при этом супергравитацию сверхмассивной черной дыры.
Это был 1992 год, уже летал телескоп имени Хаббла, но у него еще не хватало пространственного разрешения. Как известно, когда запустили космический телескоп имени Хаббла, его плохо наладили, и те картинки, которые он показал поначалу, были совершенно неприличные — там разрешение было хуже, чем при наблюдениях с Земли. В 1994 году телескоп починили. Слетала служебная миссия, которая прямо на орбите сфокусировала телескоп, и с 1994 года пошли наблюдательные данные с космического телескопа имени Хаббла, которые уже показывали действительно очень высокое пространственное разрешение, примерно на порядок лучше, чем в среднем при наблюдениях с Земли.
Когда посмотрели с высоким пространственным разрешением на центр туманности Андромеды, то увидели, что Джон Корменди был прав. Подобрались ближе к центру, и там уже никакие динамические модели не могли объяснить столь быстрое движение звезд, если не предполагать наличия темной гравитирующей массы в центре туманности Андромеды. И в 1994 году было официально признано, что открыта сверхмассивная черная дыра в туманности Андромеды, которую совсем не видно, — ядро туманности Андромеды очень спокойное, там вообще нет никакой активности, там даже звездообразования нет толком, там светящееся слабо — сколько звезд светят там слабо, столько и светят, никакого лишнего излучения от активного ядра оттуда не выходит. Но там сидит сверхмассивная черная дыра с массой в 30 миллионов солнечных масс, которая гравитирует. С этого момента начались массовые открытия сверхмассивных черных дыр в центрах совершенно спокойных, неактивных галактик.
Сначала посмотрели, конечно, на активные галактики. Посмотрели с помощью хаббловского космического телескопа на ядро радиогалактики М87, которая является центральной галактикой скопления Virgo — скопления галактик в Деве. Там есть газ, и хаббловский космический телескоп увидел очень быстрое вращение газа вблизи центра. Посчитали, какая нужна гравитация, чтобы газ вращался с такой дикой скоростью — 600 километров в секунду. Оказалось, 3 миллиарда солнечных масс. До сих пор черная дыра в центре галактики М87 является одной из самых массивных в ближней вселенной — 3 миллиарда солнечных масс.
Потом их начали находить практически везде. Очень быстро, к 1997–1998 годам, была сформулирована парадигма, что сверхмассивная черная дыра есть в центре любой галактики, у которой есть балдж, или сфероидальная звездная подсистема. Оказалось, что масса сверхмассивной черной дыры в центре галактики коррелирует с массой сфероида. Если это эллиптическая галактика, то с массой всей галактики, если это спиральная галактика, то с массой балджа. Чем массивнее балдж, тем массивнее центральная черная дыра.
Наша Галактика — это галактика позднего типа, у нас балдж очень маленький, поэтому у нас совсем скромная черная дыра массой всего лишь 3,5–4 миллиона солнечных масс. Ядро у нас тоже спокойное, там есть радиоисточник Sagittarius A, но, кроме как в радио, ядро нашей Галактики толком не светит ни в оптических лучах, ни в рентгене — светит очень слабо. Очень долго не могли совсем поймать излучение от этой черной дыры ни в каком диапазоне, кроме радио. Но зато масса нашей черной дыры очень точно измеряется, потому что в нашей Галактике от нас до центра расстояние всего 8 килопарсек, мы видим там отдельные звезды. То есть не мы, конечно, а наши немецкие коллеги на телескопе VLT, на двух микронах, где пыль мало влияет, где мы видим сквозь толщу пыли, сквозь диск нашей Галактики самый центр и отдельные звезды в самом центре. В 1990-е годы начались систематические наблюдения просто положения звезд вокруг центра Галактики, и буквально за 10–20 лет были прослежены замкнутые орбиты индивидуальных звезд вокруг центра Галактики.
Эти орбиты, как известно, эллиптические, по Кеплеру. Наша собственная Солнечная система показывает эллиптические орбиты вокруг Солнца, поэтому мы точно знаем, что вокруг точечной гравитирующей массы пробные тела будут вращаться по эллиптическим орбитам, и эти эллиптические орбиты были прослежены и замкнуты для нескольких звезд в непосредственной близости от нашей сверхмассивной черной дыры, поэтому масса нашей сверхмассивной черной дыры измерена очень точно. Это практически единственный случай, где мы можем сказать, что это именно черная дыра. Во всех других случаях, когда галактики находятся далеко от нас, мы так близко к черной дыре подобраться не можем. Мы можем ограничить гравитирующую массу внутри какого-то радиуса — допустим, внутри 100 парсек, мы можем сказать, что там сидит очень большая невидимая масса, которая гравитирует. Но это может быть, например, плотное скопление нейтронных звезд, мы не можем этого исключить. В размер 100 парсек мы можем запихнуть миллион или 10 миллионов нейтронных звезд, и они будут гравитировать точно так же, как одна сверхмассивная черная дыра. Поэтому, хотя все говорят о сверхмассивных черных дырах в ядрах галактик, на самом деле надо говорить о темных гравитирующих телах в ядрах галактик. Никто уже не заморачивается такими мелочами. Конечно, «сверхмассивная черная дыра» звучит очень красиво, поэтому все исследуют именно сверхмассивные черные дыры в ядрах галактик.
Проблема состоит сейчас в том, как сформировать сверхмассивную черную дыру в центре типичной галактики. Дело в том, что, если ее формировать традиционным образом, как сначала предлагали космологи, у нас же все сливается: у нас сначала были звезды массивные, которые оставили после себя черные дыры, допустим, массой 100 масс Солнца, потом эти черные дыры сливались, сливались, сливались, становились все более массивными, и сейчас уже, когда сливаются две галактики, у них потом сливаются и их центральные черные дыры, масса в два раза, грубо говоря, увеличивается, и таким образом постепенно в центре набирается сверхмассивная черная дыра. Но этот процесс очень-очень неспешный. Мы можем сформировать черную дыру массой 4 миллиона или даже 40 миллионов солнечных масс за 14 миллиардов лет эволюции таким неспешным слиянием. Но есть же наблюдения на больших красных смещениях. Сейчас наблюдаются квазары на красном смещении больше 6, это полмиллиарда лет после Большого взрыва. А масса черной дыры в таких квазарах — многие миллиарды солнечных масс. Вообще говоря, средняя масса центральной черной дыры в галактиках слабо эволюционировала последние 12–13 миллиардов лет. Самые сверхмассивные черные дыры в центрах галактик рядом с нами — несколько миллиардов солнечных масс, а также на красном смещении 6 — тоже несколько миллиардов солнечных масс. А вот сформировать за полмиллиарда лет такую черную дыру практически невозможно. Поэтому никто не знает, откуда же вылупились сверхмассивные черные дыры.
Конечно, экстремисты говорят: давайте все перевернем — сначала были черные дыры, а уже потом вокруг них нарастали галактики. Есть экзотический теоретический сценарий, как сформировать черную дыру еще до того, как сформировалась галактика. Но все-таки эти сценарии настолько экзотические, что не являются общепринятыми даже среди теоретиков. Они вызывают сомнения именно с точки зрения теории гравитации, с точки зрения теории газодинамики и излучения. Так что проблема сейчас стоит очень остро. Тем не менее индустрия исследования сверхмассивных черных дыр в ближних галактиках набирает обороты. Народ строит зависимости массы черной дыры от массы галактики и спорит, надо ли брать массу темного гало, в котором сидит галактика, или надо брать массу центрального звездного балджа. С теоретической точки зрения это все зависит от того, какой сценарий для роста черной дыры вы выбираете. А он еще не выбран, потому что непонятно, откуда они вообще взялись. Поэтому тут пока теоретический тупик, что не мешает народу собирать наблюдательные данные. Есть, допустим, галактика М33, в которой нет черной дыры. Она близко к нам, мы можем подобраться близко к центру, поэтому там очень хороший верхний предел на массу сверхмассивной черной дыры. Такие случаи в теории вообще еще не предусмотрены, так что тут наблюдательные данные собраны большие, а теория пока еще отстает.
доктор физико-математических наук, заведущая отделом физики эмиссионных звезд и галактик ГАИШ МГУ
Иван Крылов
07.04.2016, 21:09
http://www.gazeta.ru/science/2016/04/07_a_8164961.shtml
Астрономы нашли сверхмассивную черную дыру в ближней Вселенной
07.04.2016, 14:46
http://img.gazeta.ru/files3/69/8165069/shutterstock_210614968-pic905-895x505-86379.jpg
Shutterstock
Американские астрономы обнаружили в ближней Вселенной сверхмассивную черную дыру с массой в 17 млрд раз большей, чем масса Солнца. В чем уникальность открытой черной дыры и почему она может оказаться спящим квазаром, рассказывает отдел науки «Газеты.Ru».
Сверхмассивные черные дыры — космические объекты чудовищной массы: дыры в 10 млрд раз больше, чем наше Солнце, вероятно, являются более распространенными объектами во Вселенной, чем считалось ранее. Об этом говорит новое открытие астрономов из Калифорнийского университета в Беркли (США). Они обнаружили сверхмассивную черную дыру в созвездии Эридан на расстоянии примерно 200 млн световых лет от Земли, с массой 17 млрд солнечных масс, что близко к рекордным значениям. Исследование астрономов было опубликовано в последнем выпуске журнала Nature.
До сих пор крупнейшие сверхмассивные черные дыры были обнаружены только в ядрах очень больших галактик, находящихся в центре крупных галактических скоплений.
На данный момент рекордной массой, 21 млрд солнечных масс, обладает сверхмассивная черная дыра, найденная в скоплении галактик Кома (скопление Волос Вероники) в 2011 году. Она даже была занесена в Книгу рекордов Гиннесса.
По словам Чун-Пей Ма, руководителя научной группы, профессора Калифорнийского университета в Беркли, открытая черная дыра расположена в галактике NGC 1600, в противоположной от скопления Кома части неба, в достаточно «пустынном» месте. Профессор Чун-Пей является руководителем проекта MACS (MAssive Cluster Survey). Этот проект был основан в 2014 году. Основная его цель — исследовать звезды, черные дыры и темную материю в 100 самых массивных соседних галактиках (с массами больше чем 300 млрд солнечных масс в пределах 350 млн световых лет от Земли).
Сверхмассивная черная дыра в галактике NGC 1600 стала одним из первых успехов проекта MACS. Новые результаты основаны на анализе снимков с космического телескопа Hubble и инфракрасных спектров, полученных в обсерваториях «Джемини» на Гавайях и «Макдоналд» в Техасе.
Нет ничего удивительного в том, что исследователи находят сверхмассивные черные дыры в центре огромных галактических скоплений:
их наличие там столь же привычно, как небоскребы на Манхэттене. В то же время найденная в небольшой группе галактик сверхмассивная черная дыра подобна небоскребу в маленьком городе — это неожиданно.
«Огромные галактические скопления, такие как Кома, встречаются очень редко. Однако существует довольно много галактик, подобных NGC 1600, в галактических скоплениях среднего размера, — говорит профессор Чун-Пей. — Таким образом, главный вопрос на сегодняшний день состоит в том, является ли найденная черная дыра только верхушкой айсберга? Может быть, во Вселенной есть намного больше сверхмассивных черных дыр, которые живут не в небоскребах на Манхэттене, а в высоких зданиях где-то на равнинах Среднего Запада».
Масса обнаруженной в 2011 году в галактике NGC 4889 в скоплении Кома черной дыры-рекордсменки была определена с малой точностью — в диапазоне 3–21 млрд масс Солнца.
Полученная оценка в 17 млрд солнечных масс для черной дыры в галактике NGC 1600 является гораздо более точной: от 15,5 до 18,5 млрд солнечных масс.
Наблюдение за движением звезд вокруг центра NGC 1600 указывает на то, что найденная черная дыра является двойной. Считается, что двойные черные дыры характерны для крупных галактик, которые рождаются путем слияния меньших галактик, в центре каждой из которых располагается черная дыра. При сближении эти черные дыры начинают вращаться вокруг общего центра масс, а затем сливаются в одну черную дыру — ядро новой галактики.
Этот процесс сопровождается излучением гравитационных волн. Совсем недавно детекторам гравитационной обсерватории LIGO удалось впервые зарегистрировать сигнал от слияния черных дыр, что стало научной сенсацией. Правда, черные дыры, участвовавшие в этом событии, имели намного меньшие массы — в 29 и 36 раз больше массы Солнца.
Черные дыры образуются, когда материя становится настолько плотной, что даже свет не может выйти за ее пределы. Существует гипотеза, что сверхмассивные черные дыры могли образоваться в ранней Вселенной из газовых облаков. Изучение дальних уголков Вселенной дает ученым возможность заглянуть в прошлое и увидеть эти сверхмассивные черные дыры, которые появляются как очень яркие квазары — мощнейшие источники излучения во Вселенной. В то же время наиболее массивные из находящихся в ближней Вселенной галактики тоже могут содержать квазары в своих ядрах. По мнению профессора Чун-Пей,
обнаруженные в 2011 году его группой сверхмассивные черные дыры NGC 4889 и NGC 3842, каждая из которых весит около 10 млрд солнечных масс, могут быть покоящимися квазарами.
NGC 1600 — это довольно старая галактика, в которой не образуются новые звезды. Профессор Чун-Пей подозревает, что она может скрывать в себе древний квазар, который когда-то излучал очень интенсивно, но сейчас спит.
«Ярчайшие квазары, вероятно, представляют собой сверхмассивные черные дыры, которые не обязательно находятся в массивных галактических скоплениях, — считает Чун-Пей. — NGC 1600 стала первой сверхмассивной черной дырой, которая располагается в местной группе галактик, а не в массивном галактическом скоплении. Она может стать первым найденным потомком древнего яркого квазара, расположенного в таком месте».
Серге́й Бори́сович Попо́в
08.04.2016, 14:43
http://postnauka.ru/talks/26212
Интервью с астрофизиком о геометрии пространства и времени, горизонте черных дыр и проблеме доказательства их существования
Ивар Максутов - 03.06.2014
http://cdn.postnauka.netdna-cdn.com/img/2014/06/blackholes.jpg
Сергей Попов — астрофизик, доктор физико-математических наук, ведущий научный сотрудник ГАИШ МГУ, посвятивший свои исследования физике компактных объектов. В интервью он рассказал, что нам известно о черных дырах, и о различных подходах к их изучению.
— Когда в астрофизике возникает проблема изучения черных дыр?
— Тема возникала в некоем смысле два раза. В конце XVIII — начале XIX века Митчелл и Лаплас предположили, что могут быть тела настолько массивные и компактные, что даже свет не может улететь с их поверхности. Скорость света к тому моменту была хорошо известна. Все помнят простую формулу из школьной физики про вторую космическую скорость: чтобы запустить спутник, нужно сообщить объекту большую скорость. Но можно так сжать тело или при данном размере сделать его таким массивным, что даже свет со скоростью 300 тысяч км/с не сможет улететь. Черными дырами эти специфические тела никто тогда не называл.
— Что представляет собой черная дыра в данном подходе?
— Это может быть тело типа планеты или звезды. Оно может быть и очень маленьким, просто комбинация массы и радиуса у тела будет такая, что свет не сможет улететь. То есть это тело с очень высокой плотностью.
Но по-настоящему черные дыры, как мы их сейчас себе представляем, появились с созданием общей теории относительности. Теперь это уже не тело, а область пространства. Согласно общей теории относительности и всем геометрическим теориям гравитации массивные тела меняют геометрию пространства и времени вокруг себя. Можно так много вещества или энергии положить в данное место, что область пространства «окуклится»: не будет путей, ведущих наружу. У такого тела не будет поверхности, но будет горизонт, некая граница, отделяющая недра черной дыры от всего остального.
— Описанный второй подход дополняет первый или отменяет?
— Я бы сказал: настолько дополняет, что отменяет. Произошел классический переход количества в качество. Мы, с одной стороны, можем говорить о том, что в теории относительности идеи, которые были в ньютоновских теориях, развиваются. С другой стороны, появляются качественно новые моменты, и черные дыры — это один из таких примеров. Все завязано на геометрию пространства и времени.
— В рамках каких дисциплин изучают черные дыры?
— Можно говорить о двух совершенно разных подходах к обсуждению черных дыр. Один подход — физический. В теоретической физике подход к изучению черных дыр связан с теориями гравитации. Стоит отметить, что общая теория относительности — это лучшая на сегодняшний день теория гравитации, которая прошла все мыслимые существующие тесты. Однако, все понимают, что в какой-то момент придется двигаться дальше, и есть специально обученные люди, которые профессионально должны придумывать новые теории гравитации, что они и пытаются делать. Просто пока ничего лучше у них не получилось. Исследователи могут посчитать, что мы будем видеть, падая в черную дыру, вращаясь вокруг нее.
Другой подход — астрофизический. Астрономия — наука специфическая. Это единственная дисциплина, которая не может экспериментировать с объектами своих исследований, а только наблюдать за ними. На черные дыры мы смотрим издалека. Поскольку черная дыра — это очень специфический объект, изнутри наружу ничего не попадает, то в астрофизике мы всегда наблюдаем процессы, происходящие в окрестностях черных дыр. Это принципиально иная ситуация по сравнению с расчетами теоретиков. Обычное вещество достаточно хорошо видно, если оно не подошло слишком близко к горизонту. Поэтому для астрофизиков черная дыра и объект, очень похожий на черную дыру, оказываются чаще всего неотличимыми.
— Обнаружены ли черные дыры как объекты? Существует ли общепринятая точка зрения по данному вопросу?
— Ситуация непростая. С одной стороны, будем оперировать фактами, нет Нобелевской премии, врученной за открытие черных дыр. Она есть за нейтронные звезды, за двойные нейтронные звезды. За черные дыры, которые с точки зрения публики уж точно более интересный объект, нет. Это означает, что нет окончательного доказательства, есть последнее сомнение. С другой стороны, есть огромное количество кандидатов в черные дыры. Что это за объекты? Это объекты, поведение и свойства которых мы не можем объяснить другим способом, не привлекая какую-то фантастическую теорию, в которую, кроме ее создателя, никто не верит и которая может плохо укладываться в существующую, местами очень хорошо проверенную научную картину мира.
О каких объектах идет речь? Например, черные дыры — это, как мы думаем, естественная финальная стадия эволюции очень массивных звезд. Звезда живет, превращает водород в гелий, гелий в углерод, азот, кислород и так далее. Если звезда достаточно тяжелая, то доходит до элементов группы железа, образуется ядро и дальше реакции не идут. Гравитации, стремящейся сжать ядро, ничто не противодействует. Ядро начинает сжиматься. Может образоваться нейтронная звезда — объект такой высокой плотности, что дальнейшее схлопывание запрещено квантовыми законами. Но в какой-то момент этот барьер тоже падает, гравитация побеждает. Мы можем рассчитать, каков абсолютный предел для вещества, которое еще будет удерживаться от коллапса. Если говорить простым языком, то чем плотнее вещество, тем больше там скорость звука. Это понятно интуитивно. Если скорость звука станет больше, чем скорость света, это плохо, так быть не должно. Это один из абсолютных пределов, и дальше все должно куда-то схлопнуться. Это «куда-то» в разумной физике не может быть ничем иным, кроме черных дыр.
— Какие еще существуют способы изучения черных дыр?
— Можно пытаться исследовать очень похожие на черные дыры объекты. Самый известный способ, наверное, с помощью двойных звезд.
Две звезды вращаются вокруг общего центра массы. Они, как правило, образовались из одного облака. Грубо говоря, если бы Юпитер был в 80 раз тяжелее, то у Солнца была бы рядом вторая звезда и была бы система из двух звезд. В такой системе можно определить массу каждой звезды. Если мы видим в подобной системе темный объект, который ничего не излучает, но масса у него больше, чем тот предел, где скорость света равна скорости звука, то нам ничего не остается, как сказать, что это черная дыра: объект слишком плотный, компактный, темный.
Природа может дать еще одну хорошую возможность. Если мы возьмем предмет, бросим в черную дыру, он по определению уйдет под горизонт со скоростью света. Это может произойти без особого всплеска, и мы ничего не увидим. Но если мы бросаем один предмет, бросаем второй так, чтобы они столкнулись над горизонтом, то мы сталкиваем два объекта, которые двигаются почти со скоростью света, и выделяется колоссальное количество энергии. В природе это реализуется в тех же самых двойных звездах. Газ со звезды может течь в сторону черной дыры, закручиваться в диск, нагреваться в этом диске трением до нескольких миллионов градусов. Появляются очень яркие источники. Самые известные кандидаты в черные дыры — как раз объекты в двойных системах. Похожая вещь реализуется в активных ядрах галактик или в квазарах, блазарах. Черные дыры там уже очень тяжелые, могут иметь массы миллионы, миллиарды масс Солнца. Самая тяжелая черная дыра из известных на сегодняшний день имеет массу чуть больше 10 миллиардов солнечных масс. Ситуация очень похожая, но масштабы больше, поэтому энергии выделяется больше, появляются объекты, которые мы видим с другого конца Вселенной.
— Но при этом ты говоришь, что это кандидаты в черные дыры. Что мешает получить наконец Нобелевскую премию, сказав, что вот они — черные дыры?
— Мешает то, что мы видим процессы над горизонтом. Отличительная черта черной дыры — это наличие горизонта. Продемонстрировать наличие горизонта фантастически сложно. Если мы кидаем какой-то предмет в черную дыру, он упадет в нее. Но если мы наблюдаем издали — а мы не хотим подлетать очень близко, чтобы не оказаться внутри черной дыры, — то мы будем видеть, что предмет падает все медленнее, медленнее, медленнее и застывает над горизонтом. Так устроена природа, время по-другому течет в сильной гравитации. Что-то узнать о черной дыре действительно можно, только прыгнув в нее. Как в известном анекдоте про мафию: пока снаружи, вы особенно ничего не знаете, а если вы что-то знаете, значит, вы уже внутри. С черной дырой примерно так же, поэтому остаются вопросы.
Есть еще забавный способ что-то узнать о черных дырах — наблюдать эффект гравитационного линзирования. Представьте, что мы смотрим на далекую звезду. Если точно между нами и этой звездой пролетит массивное тело, оно исказит пространство и соберет больше световых лучей, то есть сработает как собирающая линза, и мы увидим, что блеск звезды увеличился. Дальше мы можем задаться вопросом: что же является линзой? Можем оценить массу линзы. Если окажется, что масса линзы три-шесть масс Солнца, а никакого яркого объекта не видно, то лучший кандидат — черная дыра. Есть несколько хороших событий линзирования, которые, очевидно, вызваны черными дырами.
— А когда станет возможным проводить эксперименты внутри дыры?
— Черные дыры — очень далекие объекты. Мы не знаем близких черных дыр, но если мы прикинем, где они должны находиться, то окажется, что они дальше, чем ближайшие звезды. Так что скорее спутник полетит к ближайшим звездам, чем к черным дырам. И вряд ли при нашей жизни.
— Многих в какой-то момент напугала история, связанная с обсуждением открытия хиггсовского бозона коллайдерами. Писали, что сейчас откроется черная дыра и всех засосет.
— Самое главное в данном вопросе — успокоить людей, что это все по определению достаточно безопасно. Большой адронный коллайдер имеет большую энергию частицы по сравнению с той, что мы можем делать на ускорителях. Но в космосе летают частицы с гораздо большей энергией, в миллионы миллиардов раз больше. Если бы при взаимодействии этих частиц с чем-то образовывались все засасывающие черные дыры, то не было бы в космосе таких объектов, как белые карлики. Они бы просто все оказались поглощенными черными дырами. Поскольку этого не произошло за 13 миллиардов лет, что Вселенная живет, то можно не беспокоиться и по поводу экспериментов на коллайдере. Крэш-тест природа проводила все 13 миллиардов лет, и он показал, что ничего опасного не происходит.
— Какая разница между микрочерными и черными дырами?
— Микрочерные дыры необходимо как-то получить, сейчас они вряд ли образуются в природе. Не факт, что они образуются в процессах с элементарными частицами, но черные дыры могли образовываться в очень молодой Вселенной и могли иметь всякие массы — и большие, и маленькие. Маленькие черные дыры сейчас активно испаряются. Астрономы пытаются найти вспышки, которые могли бы свидетельствовать об испарении этих первичных черных дыр. Но пока они не обнаружены.
— Существует мнение, что черные дыры — пожиратели галактик или планет.
— Вспомним очень простой факт: Земля вращается вокруг Солнца и на Солнце не падает. Если мы Солнце заменим черной дырой с такой же массой, то Земля также не будет падать на черную дыру. Черные дыры ничего не всасывают, нет никакого специального «чернодырного» действия по всасыванию, это не пылесосы. Черные дыры притягивают точно так же, как все остальные тела. Поэтому если у черной дыры есть звезда-спутник, то она просто крутится вокруг нее. Черная дыра есть в центре нашей галактики, вокруг вращаются звезды, и они не падают на нее потому, что у них есть угловой момент. Поэтому черные дыры не смогут, летая по Вселенной, все поглотить, или это заняло бы бесконечное время, потому что пролететь необходимо очень близко. Как если у вас дома есть старый, плохо работающий пылесос, который нужно поднести очень близко. Черная дыра, если хотите, очень плохой пылесос и работает чуть-чуть по-другому.
Материал подготовлен на основе радиопередачи «ПостНаука» на радио
доктор физико-математических наук, ведущий научный сотрудник ГАИШ МГУ
Эмиль Ахмедов
09.04.2016, 16:15
http://postnauka.ru/faq/2996
7 фактов о самых тяжелых объектах во Вселенной
16.07.2012
http://postnauka.ru/faq/2996
NASA Goddard Space Flight Center
Черные дыры всегда оставались одной из самых больших загадок современной космологии. Насколько продвинулись в практическом и теоретическом изучении этой научной гипотезы исследователи, рассказывает физик.
В физике черных дыр есть две составляющие: экспериментальная и теоретическая. Коснемся в первую очередь теоретической составляющей. Как исторически возник вопрос о черных дырах? Если бросить камень с высоты параллельно поверхности Земли, то он полетит по параболе. При увеличении начальной скорости камня парабола будет удлиняться. Наконец, при некоторой, достаточно большой начальной скорости камень просто начнет летать вокруг Земли. Другими словами, он будет свободно падать, но при этом собственно падения происходить не будет. Точнее, если камень находится в атмосфере, то он будет тереться о воздух и, теряя скорость, вскоре упадет. Но если бросить его достаточно высоко за пределами атмосферы, то там трение о воздух отсутствует, и вращение будет вечным.
Скорость, с которой нужно бросить камень, чтобы он летал вокруг Земли, называется «первая космическая». Именно с такой скоростью летают спутники вокруг Земли. Вторая космическая скорость – это такая скорость, с которой камень улетит с Земли на бесконечность.
Мизнер Ч., Торн К. и Уиллер Дж. «Гравитация» // Мир, – 1977
Хриплович И.Б. Общая теория относительности» // НИЦ «Регулярная и хаотическая динамика», – 140 с.
2
Первая и вторая космическая скорости зависят от размеров того тела, с которого нужно улететь, и от его массы. Лаплас задался таким вопросом: каковы должны быть размеры тела при данной массе, чтобы вторая космическая скорость была равна скорости света. Существует формула, связывающая радиус этого тела и массу, при которой вторая космическая скорость превышает скорость света.
Оказывается, например, что если сохранить неизменной массу Земли и сжать ее до нескольких миллиметров, то вот как раз вторая космическая скорость достигнет скорости света. То есть если какая-то сила сожмет Землю до этих размеров, то она станет таким объектом, с поверхности которого даже свет вылететь не может. Именно так впервые возник вопрос о черных дырах еще во времена, когда люди не знали ничего про общую теорию относительности.
3
После открытия общей теории относительности в начале XX века Шварцшильдом было найдено решение уравнений общей теории относительности. Он нашел такое решение, которое описывало, как ведет себя гравитационное поле снаружи массивного тела, имеющего идеальную форму шара. Существенной составляющей этого решения было то, что если размер этого тела меньше, чем как раз тот размер, который был найден Лапласом, то с него свет улететь не может. Это решение стали называть «Шварцшильдовской черной дырой». Исходно про такие объекты многое не было понятно, но потихонечку люди стали разбираться с их свойствами. В конце 60-х годов в первую очередь Пенроузом и Хокингом были разработаны разные математические методы, при помощи которых исследовались свойства геометрии пространства-времени, то есть гравитационное поле, в присутствии черных дыр.
Л.Д.Ландау и Е.М.Лифшиц, Теория поля// Теоретическая физика, ФИЗМАТЛИТ,1988. – 531 C.
4
С использованием методов Пенроуза и Хокинга в начале 70-х годов XX века было сделано наблюдение, что черной дыре можно приписать энтропию. Но не было понятно, почему у черной дыры при наличии энтропии отсутствует температура. Однако в середине 70-х годов XX века Хокинг теоретически показал, что если рассмотреть квантовые поля на фоне геометрии Шварцшильда, то оказывается, что черная дыра излучает так, будто она имеет температуру.
Вроде бы это два противоречивых утверждения. С одной стороны, имеет место быть тезис о том, что из черной дыры ничего вылететь не может. С другой стороны, что при этом она излучает. Однако никакого противоречия в подобном утверждении нет. Ничего не может вылететь из-под горизонта черной дыры. Однако оказалось, что процесс формирования черной дыры, так называемый «коллапс», происходит так, что резко меняются свойства так называемых «нулевых колебаний» квантовых полей на фоне черной дыры. А именно происходит перестройка вакуума. В результате она начинает рождать излучение, которое на самом деле формируется снаружи горизонта черной дыры. При этом дыра теряет массу (энергию покоя) и уменьшается.
5
В реальность существования черных дыр сейчас верит все больше и больше физиков, потому что есть объекты, которые наблюдаются на звездном небе и свойства которых мы не можем интерпретировать иначе как то, что они ведут себя подобно черным дырам. Так в нашей галактике найдено порядка 50-ти объектов такого сорта. Их массы, как правило, составляют более трех масс Солнца.
Помимо этого существует представление, подтвержденное наблюдаемыми данными, что в активных ядрах галактик находятся гигантские черные дыры. Это такие объекта, масса которых уже достигает сотен тысяч или даже миллионов масс Солнца.
6
На самом деле эффект Хокинга очень слабый, и он не подтвержден экспериментально, а предсказан только теоретически. К сожалению, эффект Хокинга настолько слаб, что даже для такого сорта объектов, которые наблюдаются на звездном небе, мы не сможем его увидеть. Но понимание этого эффекта может послужить первым шагом в открытии свойств квантовой гравитации.
E.Poisson, «A Relativist's Toolkit (The Mathematics of Black-Hole Mechanics)»
Derek Raine and Edwin Thomas, «Black Holes» (Imperial Collage Press, 2009)
7
Много вопросов, связанных с черными дырами, остается все еще открытыми. Среди них: как на микроскопическом уровне происходит рождение излучения Хокинга в поле черных дыр. Кроме того, несмотря на то, что все меньше и меньше людей сомневаются в существовании этого эффекта, он не подтвержден экспериментально. В связи с этим возникает вопрос о реальности его существования. Также пока нет ответа на то, как происходит отклик в эффекте Хокинга. То есть как происходит уменьшение массы черной дыры при рождении соответствующего излучения, и что является его результатом? Что происходит на конечной стадии испарения, и если дыра не полностью испаряется, то что остается в результате?
доктор физико-математических наук, ведущий научный сотрудник Института теоретической и экспериментальной физики имени А. И. Алиханова, доцент кафедры теоретической физики МФТИ, доцент факультета математики НИУ ВШЭ
Эмиль Ахмедов
10.04.2016, 15:43
http://postnauka.ru/video/1924
Физик об изучении черных дыр, Карле Шварцшильде и гигантских черных дырах
08.06.2012
2zfPk-Iw5y0
Этот материал является частью курса «Основы фундаментальной физики»
Как возможно изучение черных дыр? Что такое Шварцшильдовская черная дыра? И в чем особенность гигантских черных дыр? Об этом рассказывает доктор физико-математических наук Эмиль Ахмедов.
В физике черных дыр есть две составляющие: экспериментальная и теоретическая. Коснемся в первую очередь теоретической составляющей. Как исторически возник вопрос о черных дырах? Если бросить камень с высоты параллельно поверхности Земли, то он полетит по параболе. При увеличении начальной скорости камня парабола будет удлиняться. Наконец, при некоторой, достаточно большой начальной скорости камень просто начнет летать вокруг Земли. Другими словами, он будет свободно падать, но при этом собственно падения происходить не будет. Точнее, если камень находится в атмосфере, то он будет тереться о воздух и, теряя скорость, вскоре упадет. Но если бросить его достаточно высоко за пределами атмосферы, то там трение о воздух отсутствует, и вращение будет вечным.
Скорость, с которой нужно бросить камень, чтобы он летал вокруг Земли, называется «первая космическая». Именно с такой скоростью летают спутники вокруг Земли. Вторая космическая скорость – это такая скорость, с которой камень улетит с Земли в бесконечность.
В реальность существования черных дыр сейчас верит все больше и больше физиков, потому что есть объекты, которые наблюдаются на звездном небе и свойства которых мы не можем интерпретировать иначе как то, что они ведут себя подобно черным дырам. Так в нашей галактике найдено порядка 50-ти объектов такого сорта. Их массы, как правило, составляют более трех масс Солнца.
Помимо этого существует представление, подтвержденное наблюдаемыми данными, что в активных ядрах галактик находятся гигантские черные дыры. Это такие объекты, масса которых уже достигает сотни тысяч или даже миллионов масс Солнца.
Много вопросов, связанных с черными дырами, остается все еще открытыми. Среди них — как на микроскопическом уровне происходит рождение излучения Хокинга в поле черных дыр. Кроме того, несмотря на то, что все меньше и меньше людей сомневаются в существовании этого эффекта, он не подтвержден экспериментально. В связи с этим возникает вопрос о реальности его существования. Также пока нет ответа на то, как происходит отклик в эффекте Хокинга. То есть как происходит уменьшение массы черной дыры при рождении соответствующего излучения и что является его результатом? Что происходит на конечной стадии испарения, и если дыра не полностью испаряется, то что остается в результате?
доктор физико-математических наук, ведущий научный сотрудник Института теоретической и экспериментальной физики имени А. И. Алиханова, доцент кафедры теоретической физики МФТИ, доцент факультета математики НИУ ВШЭ
Все материалы автора
Андрей Борисов
29.08.2016, 02:59
https://lenta.ru/articles/2016/08/29/hole/
00:05, 29 августа 2016
Величайшая тайна черных дыр стала еще непонятнее
https://icdn.lenta.ru/images/2016/08/26/15/20160826153707506/detail_a70c487c129fcc3dc491f5e7ac6cd368.jpg
Черная дыра (в представлении художника)
Изображение: NASA
Физик-экспериментатор Джефф Штайнхауэр из Техниона (Израиль) создал квантовый аналог черной дыры, наблюдал ее испарение (эффект Хокинга) и впервые обнаружил квантовую запутанность между парой частиц, одна из которых упала на модельный объект, а другая удалилась от него. Результаты исследований, встреченные коллегами ученого с большим энтузиазмом, опубликованы в журнале Nature Physics.
Черные дыры представляют собой массивные объекты, ограниченные так называемым горизонтом событий. Любое тело, достигшее черной дыры, согласно общей теории относительности, падает в гравитационный объект и не в состоянии его покинуть. Таким образом, масса черной дыры при классическом описании не может убывать. Ситуация меняется в квантовом случае, где гравитационный объект может испариться в результате эффекта, получившего название в честь его первооткрывателя Стивена Хокинга.
Явление сводится к образованию на горизонте событий пары виртуальных частиц. Частица с положительной энергией становится реальной и улетает от черной дыры, а другая, с отрицательной энергией, падает в нее и тем самым уменьшает ее массу. Явление, описанное в 1974 году британским ученым, предполагает существование теплового излучения. В статье ученого приводилось выражение для его температуры, которая оказалась чрезвычайно мала. Например, для черной дыры солнечной массы она имеет порядок одной миллионной кельвина. Отличить столь малую температуру от шума в астрономических наблюдениях современными методами невозможно.
Об излучении черных дыр высказывался советский физик-теоретик Владимир Грибов. Ученый не написал посвященную этому работу, поскольку считал явление «само собой разумеющимся». Публикации статьи Стивена Хокинга об испарении гравитационных объектов предшествовал визит в СССР, где британец беседовал с советскими учеными.
В 1981 году канадский физик-теоретик Билл Унру предложил гидродинамическую аналогию черной дыры, которая и была реализована в экспериментах Штайнхауэра. Ситуация, аналогичная происходящему на горизонте событий реального гравитационного объекта, моделировалась при помощи сазера (акустического лазера), который создавал звуковые волны специального вида в бозе-эйнштейновском конденсате — состояние вещества из бозонов, находящихся при температуре, близкой к абсолютному нулю. В этой фазе квантовые эффекты, имеющие место на микроскопическом уровне, начинают проявляться на макроскопическом: приближенно все вещество конденсата ведет себя как одна макроскопическая квантовая частица.
Конденсат состоял из десятков тысяч атомов рубидия-87, сформированных в облако цилиндрической формы длиной несколько миллиметров. Температура такой среды — меньше одного кельвина, а скорость звука в ней — порядка полумиллиметра в секунду. Единственными возмущениями в системе являются квантовые флуктуации. Описание среды проводится гидродинамическими методами. Это допускает введение понятия фононов — квазичастиц (фиктивных частиц), описывающих звуковые колебания. Именно их виртуальное рождение вблизи аналога горизонта событий и квантовую запутанность удалось наблюдать Штайнхауэру.
https://icdn.lenta.ru/images/2016/08/26/15/20160826153331032/pic_80a10c13ada5256d27d6b05d75d7fa0f.jpg
Джефф Штайнхауэр
Фото: phsites.technion.ac.il
Для этого в бозе-эйнштейновском конденсате была создана потенциальная яма. При ее прохождении частицы разгонялись до сверхзвуковых скоростей. Часть конденсата, частицы которого двигались со сверхзвуковой скоростью, представляли собой аналог черной дыры, а его область, где частицы перемещались точно со скоростью звука, — модельный горизонт событий. Именно на нем в результате квантовых флуктуаций происходило рождение пар фононов, квазичастицы из которых разлетались в противоположные стороны с дозвуковой и сверхзвуковой скоростями. Аналогичная ситуация должна наблюдаться и в случае с реальной черной дырой.
Штайнхауэру удалось измерить температуру такого излучения и установить корреляцию между разлетевшимися частицами. В квантовой механике запутанностью называется явление, при котором состояния частиц (например, спин или поляризация), разнесенных на расстояние друг от друга, не могут быть описаны взаимонезависимо. Корреляция проявляла себя как одинаковая плотность конденсата на противоположный, но равных расстояниях от модельного горизонта событий. Данный факт ученый фактически интерпретировал как первое экспериментальное доказательство существования квантовой запутанности между парами частиц, рожденными на горизонте событий черной дыры.
Последний эксперимент Штайнхауэра проводился 4,6 тысяч раз в течение шести суток. Все работы 50-летний ученый, выпускник Калифорнийского университета в Беркли (США), проводил в возглавляемой им лаборатории, где он с 2013 года является единственным сотрудником. Коллеги избегают сотрудничества с Штайнхауэром из-за его педантизма и высокой требовательности. Ранее ученый в 2009 году создал гидродинамический аналог черной дыры, а в 2014 году имитировал излучение Хокинга.
Штайнхауэр полагает, что его модель поможет разрешить парадокс исчезновения информации в черных дырах и укажет на пути объединения квантовой механики и общей теории относительности. Оптимизм экспериментатора разделяют не все теоретики. Например, Леонард Сасскинд из Стэнфордского университета (США), занимавшийся теорией струн, отмечает, что потери информации в модельной черной дыре нет, и потому она непригодна для разрешения парадокса реального объекта.
Израильский коллега Штайнхауэра, физик Ульф Леонхардт отметил, что квантовую запутанность в экспериментах с гидродинамической черной дырой удалось обнаружить лишь для высокоэнергетических фононов. Для квазичастиц низких энергий корреляции в модельном случае слабы. Последнее обстоятельство, скорее всего, несправедливо для реальных черных дыр, где квантовая запутанность имеет место для фотонов любых энергий.
Андрей Борисов
29.08.2016, 03:04
https://lenta.ru/articles/2016/08/15/unruh/
00:07, 15 августа 2016
Как ускориться и увидеть вакуум
https://icdn.lenta.ru/images/2016/08/12/15/20160812152409281/detail_96ee6d3bb7df50dc3f99949b9863b597.png
Изображение: A.Hobart / Chandra X-Ray Observatory / Handout / NASA / Reutets
Ровно сорок лет назад канадский физик-теоретик Билл Унру опубликовал в журнале Physical Review D статью, в которой описал названный впоследствии его именем квантовый эффект. Работа ученого позволила пересмотреть понятие физического вакуума и представляет собой единственное разумное объяснение излучения Хокинга. «Лента.ру» рассказывает об эффекте Унру.
Явление, открытое канадским физиком-теоретиком, заключается в следующем. Равноускоренно движущийся наблюдатель видит вокруг себя равновесное тепловое излучение, тогда как покоящийся или равномерно перемещающийся его не замечает. Эффект носит существенно квантовый характер, а его экспериментальное обнаружение чрезвычайно затруднительно.
Температура излучения Унру с точностью до комбинации физических постоянных прямо пропорциональна ускорению наблюдателя. В частности, если эта величина равняется ускорению свободного падения на поверхности Земли, достигающему 9,81 метра за секунду в квадрате, то температура Унру равняется четырем на десять в минус двадцатой степени кельвинов. Это означает, что для экспериментального обнаружения излучения Унру как минимум необходимы частицы с огромными ускорениями. Альтернативной проверкой выводов канадского физика может служить прямое наблюдение испарения черных дыр (излучения Хокинга), с которым тесно связан эффект Унру.
Явление позволило по-новому взглянуть на фундаментальные для физики понятия неинерциальной системы отсчета и вакуума. Фактически эффект Унру позволяет определить понятие абсолютной неинерциальной системы отсчета — такой системы, которая движется относительно покоящегося или равномерно движущегося наблюдателя с ускорением. Вакуум в эффекте Унру (как и в квантовой теории поля) представляет собой совокупность нулевых мод (колебаний) квантовых полей, с перестройкой которых и связано появление теплового излучения.
Билл Унру впервые определил температуру теплового излучения вокруг ускоренного движущегося наблюдателя. Его работе предшествовали исследования многих физиков. Особое внимание автор уделил статьям Стивена Хокинга, Стивена Фуллинга и Пауля Дэвиса. Часто фамилии этих ученых используются в названии эффекта Унру.
Математически это проявляется в неинвариантности преобразований гамильтониана, описывающего квантовую систему, при переходе от одной неинерциальной системы к другой, так что равномерно двигающийся наблюдатель и равноускоренно перемещающийся наблюдатель будут видеть разные вакуумные состояния.
В настоящее время эффект Унру экспериментально не обнаружен, опубликованные экспериментальные работы, посвященные излучению, не получили всеобщего признания. Главная трудность связана с детектированием чрезвычайно слабого теплового излучения, которое на практике трудно отличить от теплового шума. С другой стороны, эффект Унру можно проверить, наблюдая за черными дырами.
https://icdn.lenta.ru/images/2016/08/12/15/20160812151314808/pic_d13c212b79176a9063b8b32b318adb41.png
Билл Унру
Фото: The University of Pittsburgh
Выражение для температуры Унру совпадает с формулой для температуры излучения Хокинга. Эффект, открытый британским физиком-теоретиком, заключается в следующем. С течением времени черная дыра — массивный объект, ограниченный в пространстве-времени горизонтом событий, который не может пересечь попавшее за него тело, может испариться вследствие излучения, происходящего из-за квантовых флуктуаций, связанных с образованием пар частиц. Одна частица из такой пары улетает от черной дыры, а другая — падает в нее.
Эффект Унру приводит к далеко идущим последствиям. Например, его справедливость приводит к сокращению времени жизни элементарных частиц — например, протона и электрона, считающихся стабильными в инерциальной системе отсчета. Кроме того, явление позволяет закрыть несколько физических теорий, претендующих на роль фундаментальных. В частности, в рамках теории струн (сторонником которой Унру не является) удается вывести формулу для температуры Унру, но это невозможно в петлевой квантовой гравитации. Это связано с тем, что в последней не определено плоское пространство-время, которое существует во всех описаниях эффекта Унру.
Явление используется в нескольких экзотических теориях. Несколько раз с его помощью пытались объяснить пролетные аномалии (неожиданное увеличение скорости) в движении космических аппаратов. В последний раз это сделал Майкл Маккалош из Плимутского университета (Великобритания), который также предложил новое объяснение работы двигателя EmDrive. Его примеру через два месяца последовали финские физики. Однако значение эффекта Унру для науки заключается в другом.
Эффекты Хокинга и Унру тесно связывают между собой общую теорию относительности и квантовую теорию поля. В основе первой лежит, в частности, принцип эквивалентности. В своей слабой форме он означает пропорциональность инертной (связанной с движением) и гравитационной (связанной с тяготением) масс и позволяет (в сильной форме) в ограниченной области пространства не различать гравитационное поле и движение с ускорением. Классический пример — лифт. При его равноускоренном движении вверх относительно Земли находящийся в нем наблюдатель не в состоянии определить, находится он в более сильном гравитационном поле или перемещается в рукотворном объекте.
Аналогично горизонту черной дыры, вблизи которого можно наблюдать излучение Хокинга, для эффекта Унру определено понятие риндлерова горизонта, вблизи которого ускоренно движущийся наблюдатель должен заметить тепловое излучение. В этом смысле испарение Хокинга и излучение Унру можно считать одним из проявлений принципа эквивалентности Эйнштейна. Прямое обнаружение этих эффектов стало бы триумфом теоретической физики.
Андрей Борисов
29.08.2016, 03:08
https://lenta.ru/articles/2016/01/12/blackhole/
00:08, 12 января 2016
Стивен Хокинг раскрыл тайну черных дыр
https://icdn.lenta.ru/images/2016/01/11/17/20160111175440522/detail_e66ddec5c2026cc2e75b877c1ee74459.jpg
Падение тел в черную дыру (в представлении художника)
Изображение: arvinblaine
Физики-теоретики Стивен Хокинг, Малкольм Перри и Эндрю Строминжер предложили решение парадокса потери информации в черных дырах. Эта проблема многими учеными считается одной из самых важных в физике, поскольку связана с детерминированностью мира — тем, как прошлое, настоящее и будущее влияют друг на друга. «Лента.ру» рассказывает подробности исследования.
Сущность проблемы информационного парадокса черных дыр сводится к следующему. Согласно простейшей версии теоремы «об отсутствии волос», незаряженные и невращающиеся черные дыры, описанные в пространстве-времени Шварцшильда, характеризуются только одним параметром — массой. Слово «волосы» в этом случае используется в качестве метафоры для обозначения других параметров и предложено физиком Джоном Уилером.
Парадокс означает, что нет никакого способа отличить друг от друга черные дыры, имеющие равные массы. Материя, попадающая в черную дыру, впоследствии испаряется благодаря излучению Хокинга, и неясно, что происходит с переносимой ею ранее информацией. В широком смысле это может означать, как отметил Строминжер в интервью редактору Сету Флетчеру для Scientific American, недетерминированность мира: настоящее не определяет будущее и не может быть использовано для полной реконструкции прошлого.
О новом открытии Хокинг впервые заявил 25 августа 2015 года, выступая на конференции в Королевском технологическом институте в Стокгольме. Тогда он заинтриговал научную общественность готовящейся статьей, посвященной решению парадокса черных дыр. «Информация сохраняется не внутри, как можно было бы ожидать, а на горизонте событий черной дыры», — заявил тогда ученый. Он также упомянул супертрансляции, используемые авторами в работе (о них — ниже), исследование которых Строминжером вдохновило Хокинга на написание статьи. «Идея в том, что супертрансляции есть голограмма падающих частиц, — сказал Хокинг. — Они содержат всю информацию, которая иначе могла бы быть утеряна». Рассказал ученый и о перспективах использования информации из черных дыр. «Для всех практических целей информация теряется», — сказал Хокинг. По его словам, черные дыры возвращают информацию в «хаотической и бесполезной форме».
В своей лекции, организованной на день раньше, 24 августа, Хокинг рассказал о черных дырах как туннелях в другие вселенные. «Если черная дыра достаточно большая и вращается, она может быть мостом в другую вселенную. Но пройдя по нему, вы не вернетесь в нашу», — сказал физик. Представленные на конференции соображения Хокинг изложил 3 сентября в препринте на сайте arXiv.org. Сама работа Хокинга в соавторстве с Перри и Строминжером была опубликована там же 5 января 2016 года.
https://icdn.lenta.ru/images/2016/01/11/17/20160111174338154/pic_9bbabb2a1677533ed04717282b9f16b4.jpg
Малкольм Перри, Эндрю Строминжер и Стивен Хокинг (слева направо)
Фото: Anna N. Zytkow / scientificamerican.com
Ранее (с середины 1970-х годов) Хокинг полагал, что в черных дырах информация не сохраняется. По этому вопросу в 1997 году он и Кип Торн заключили пари с американским физиком-теоретиком Джонном Прескиллом. Точка зрения Хокинга об информационном парадоксе черных дыр изменилась после прогресса в теории струн.
В 1996 году в рамках теории струн Строминджер и Кумрун Вафа продемонстрировали вывод выражения для энтропии черных дыр, впервые полученного термодинамическим способом израильским физиком Якобом Бекенштейном в 1973 году. Их вывод указывает на то, что при испарении черных дыр сохраняется унитарность квантовой механики (связанная с непротиворечивой интерпретацией вероятности), что ранее Хокинг подвергал сомнению.
В опубликованной в 2005 году работе британский ученый попробовал качественно объяснить сохранение информации в черной дыре при помощи техники функционального интеграла, взятого по пространству с тривиальной топологией. Эти же результаты следовали из предложенной в 1998 году Хуаном Малдасеной в рамках теории струн идеи AdS/CFT-соответствия. Она, в свою очередь, основана на голографическом принципе, предложенном в 1993 году нидерландским физиком-теоретиком Герардом т'Хоофтом (этот ученый 5 сентября 2015 года опубликовал препринт с альтернативным способом сохранения информации черной дырой).
В новой работе ученые основывались на исследованиях 1960-х годов. Тогда физики Стивен Вайнберг и другие предложили концепцию супертрансляций (их не стоит путать с одноименным термином, используемым в суперматематике). Кроме того, авторы использовали результаты Строминжера и соавторов, из которых следовало наличие у черной дыры так называемых мягких волос. Строминжер использовал известные из квантовой электродинамики мягкие фотоны — кванты электромагнитного излучения большой длины волны, используемые в перенормировках (процедурах устранения расходимостей в квантовой теории поля). Такие частицы обладают малой энергией и при описании вакуумного состояния (с наименьшей энергией) приводят к появлению нового квантового состояния, характеризующегося угловым моментом (поскольку таковой есть у фотона).
Строминжер заинтересовался вопросом, будет ли отличным первоначальное квантовое состояние системы от последующего в случае, если положить длину волны фотона бесконечной (то есть посчитать его энергию равной нулю). Вычисления показали, что квантовое состояние системы в этом случае изменится. Мягкие гравитоны и фотоны в пределе бесконечной длины волны существуют на границах пространства-времени. В приложении к черным дырам оказывается, что мягкие частицы локализуются на горизонте событий — трехмерной голограмме четырехмерной пространственно-временной дыры.
Говоря о супертрансляциях, ученые имеют в виду преобразования идентичных световых лучей, существующих на горизонте событий черной дыры. В 1960-х годах супертрансляции использовались для описания световых лучей на бесконечности пространства-времени, а не горизонте событий черных дыр. Строминжер пояснил идею супертрансляции на примере совокупности бесконечно длинных и идентичных друг другу соломинок. Если одну из них переместить вверх или вниз относительно других, можно ли считать такое перемещение реальным? Исследования ученых дали положительный ответ на этот вопрос.
https://icdn.lenta.ru/images/2016/01/11/17/20160111174525109/pic_f6ee11ef5ac17121c27c44ef6cad4d69.jpg
Герард т'Хоофт и Стивен Хокинг
Фото: Håkan Lindgren / kth.se
1/2
«Если вы сравните две черные дыры, которые отличаются только добавлением мягкого фотона, который не изменяет энергию, вы получите разные черные дыры. А потом вы позволите им испариться. В этом случае они должны испариться во что-то отличное друг от друга. Мы даем точную формулу, являющуюся одним из главных результатов нашей работы, описывающую отличия в квантовом состоянии черной дыры, в которую был или не был добавлен мягкий фотон», — рассказал в интервью Scientific American Строминжер.
Физик отметил, что в ходе проведенного исследования ему удалось сформулировать 35 перспективных задач, решение каждой из которых может занять до нескольких месяцев. «Если у нас есть все ингредиенты для понимания квантовой динамики черных дыр, это делает возможным подсчет количества голографических пикселей», — сказал он. В дальнейшем Строминжер с соавторами собирается изучать не супертрансляции, а суперротации. Используя аналогию с одинаковыми бесконечно длинными соломинками, можно сказать, что в этом случае последние меняются местами друг с другом (одна соломинка совершает вращение вокруг другой).
«Они (суперротации) представляют собой еще один вид симметрии на бесконечности, где вы не просто перемещаете световые лучи вверх и вниз, а позволяете им двигаться друг относительно друга», — сказал Строминжер. Такие преобразования ученые начали изучать около десяти лет назад, а прогресс в их понимании достигнут лишь в последние два года. Свое видение новой работы Хокинг, отметивший 8 января свое 74-летие, представит на лекциях, которые 26 января и 2 февраля будет транслировать BBC Radio 4.
Серге́й Бори́сович Попо́в
14.10.2016, 19:39
https://postnauka.ru/courses/17745
YHpN9jgHpLk
Астрофизик о черных дырах в ОТО, излучении Хокинга и происхождении гравитационных волн
Звезды чаще всего рождаются не поодиночке, а парами. Например, пусть возникла пара из двух массивных звезд. Затем обе поочередно взорвались как сверхновые и дали две черных дыры, и они крутятся друг вокруг друга. Представим, как два шарика катаются по нашей резиновой плоскости, от них обязательно побежит рябь. В случае пары черных дыр это очень хороший процесс для испускания гравитационных волн, потому что у нас сразу есть большие массы, заключенные в компактные области и двигающиеся с огромными скоростями.
Андрей Борисов
06.12.2016, 04:54
https://lenta.ru/articles/2016/12/05/hawking/
00:05, 5 декабря 2016
Хокинг предложил новое описание черных дыр
https://icdn.lenta.ru/images/2016/12/04/19/20161204194605357/detail_a3844b51c9b4bf064442a19ec3bc607c.jpg
Иллюстрация к испарению черной дыры
Изображение: APS/Alan Stonebraker
Физики-теоретики Стивен Хокинг, Малкольм Перри и Эндрю Строминжер предложили расширить классическое описание черных дыр. Сделать это предлагается при помощи введения новых законов сохранения, позволяющих описать гравитационные объекты при помощи гораздо большего числа параметров, чем это проводится сегодня. С исследованием ученых можно ознакомиться в библиотеке электронных препринтов arXiv.org, кратко о нем писала «Лента.ру».
Работа ученых продиктована желанием получить ответ на вопрос: теряется ли в черной дыре информация — например, сведения о поляризации падающей в нее частицы? Сегодняшняя точка зрения авторов предполагает положительный ответ, хотя пару десятилетий назад Хокинг придерживался противоположной точки зрения. Однако есть оговорка: информация, поглощенная черной дырой, хоть и не теряется, но воспроизвести ее в сколь-нибудь приемлемом для человека виде, скорее всего, не получится.
Вопрос об информационном парадоксе черной дыры имеет историю в несколько десятилетий, подробнее с ней можно ознакомиться в статье «Ленты.ру» начала 2016 года, посвященной первому совместному исследованию этого вопроса Хокингом, Перри и Строминжером. Тогда, напомним, обоснование того, что в черной дыре не теряется информация, авторы строили на двух обстоятельствах: во-первых, вакуум в квантовой гравитации не является уникальным состоянием; во-вторых, черные дыры имеют так называемые мягкие волосы.
Планковская длина равна примерно 1,62х10-35 метрам, что в 2х1020 раз меньше «диаметра» протона. Численное значение планковских единиц (длины, массы, времени и других) получается из четырех фундаментальных физических постоянных и очерчивает границу применимости современной физики.
Под квантовой гравитацией понимается теория, описывающая мир на планковском масштабе. В этом случае не получится ограничиться рассмотрением природы явления с позиций только квантовой механики или общей теории относительности — нужны оба подхода. Авторы полагают, что вакуум вблизи черных дыр в этом случае бесконечно вырожден, то есть по сути имеется не одно уникальное состояние с минимальной энергией, а бесконечный набор вакуумов, энергия которых практически не отличается друг от друга.
Такое отличие достигается за счет падения на дыру фотонов с чрезвычайно низкой энергий — именно они, по Хокингу, Перри и Строминжеру, приводят к тому, что у гравитационного объекта появляются новые параметры. Ученые пошли еще дальше и попробовали обобщить закон сохранения электрического заряда для черной дыры. В классической электродинамике такой закон может быть получен интегрированием радиальной составляющей электрического поля вокруг сферы, окружающей заряженную область. Если заряд не покидает ее, его значение не должно зависеть от времени.
Если произвести интегрирование по сфере бесконечного радиуса, закон также будет выполняться. Как заметил Строминжер, это приводит к появлению бесконечного числа новых сохраняющихся величин. Именно их подробному описанию и посвящена вторая совместная статья авторов. В новой работе ученые предложили использовать при описании гравитационных объектов супертранcляции — преобразования, которые описывают идентичные световые лучи, существующие на горизонте событий черной дыры (эти термины не стоит путать с понятиями из суперматематики). Они, как показывают расчеты, приводят к изменению суперротационного заряда черной дыры.
https://icdn.lenta.ru/images/2016/01/11/17/20160111174338154/pic_9bbabb2a1677533ed04717282b9f16b4.jpg
Малкольм Перри, Эндрю Строминжер и Стивен Хокинг (слева направо)
Фото: Anna N. Zytkow / scientificamerican.com
«Они (суперротации) представляют собой еще один вид симметрии на бесконечности, где вы не просто перемещаете световые лучи вверх и вниз, а позволяете им двигаться друг относительно друга», — сказал еще в начале 2016 года Строминжер. Заметим, что в рамках стандартного формализма Арновитта-Дезера-Мизнера, популярного при попытках квантового рассмотрения пространства-времени вблизи черных дыр, используются лишь масса, импульс, момент импульса и специальные заряды — в частности, электрический. По мнению авторов, суперротационные заряды должны дополнить описание черных дыр и, в частности, именно в них может скрываться информация, которую уносит в гравитационный объект падающий в него фотон.
Что же думают о работе Хокинга, Перри и Строминжера их коллеги? Физик-теоретик Гэри Хоровиц из Калифорнийского университета в Санта-Барбаре в рецензии к первой работе отмечал, что исследование ученых по сути не решает информационную проблему черных дыр. По его мнению, для этого есть несколько причин. Во-первых, проведенный учеными анализ должен быть воспроизведен не только для фотонов — частиц, не имеющих массы и участвующих в электромагнитном взаимодействии, но и для гравитации, с которой между тем фотоны напрямую не взаимодействуют. Во-вторых, по мнению Хоровица, мягкие волосы, по всей видимости, не воспроизводят всю информацию, которую поглощает черная дыра при падении в нее частицы.
Гораздо дальше идет другой физик, чех Любош Мотль, ранее работавший над теорией струн в Гарвардском университете. По его мнению, исследования Хокинга, Перри и Строминжера принципиально неверны, поскольку основываются на представлениях квантовой теории поля, существовавших несколько десятилетий назад. Авторы используют формализм локальной квантовой теории поля, который, по мнению Мотля, неприменим к черным дырам. Мотль полагает, что решающее влияние на исследование оказывает авторитет Хокинга, с которым сейчас никто не видит смысла вступать в спор.
Дмитрий Гусев
19.02.2017, 12:59
http://img.anews.com/media/posts/images/20160519/46952983.jpg
Научные специалисты из Массачусетского технологического института (США) обнаружили черную дыру, которая способная производить звезды. Область пространства-времени выбрасывает огромное количество газа, из которого и рождаются новые звезды.
Американские ученые сделали сенсационное открытие. Находка была сделана во время наблюдения за скоплением галактик Феникс, которое находится примерно в 5,7 миллиардах световых лет от нашей планеты. Данное скопление состоит примерно из 1000 галактик, а самая большая из них находится в центре.
Ранее специалисты были уверены, что это именно они производят на свет новые звезды со скоростью 1000 штук в год. Однако спустя некоторое время ученые обнаружили черную дыру, которая выбрасывает в открытый космос большое количество раскаленного газа, с помощью которого и образуются небесные светила.
Лентa.Ru
02.03.2017, 09:17
https://lenta.ru/articles/2017/03/02/blackhole/
00:03, 2 марта 2017
https://icdn.lenta.ru/images/2017/03/01/19/20170301195149428/detail_8a07af927468e734d30ae1a8285c8b55.jpg
Астрономы описали ветер черной дыры
Фото: JPL-Caltech / NASA
Канадские, немецкие, нидерландские, испанские, британские и американские астрофизики изучили космический ветер, производимый активным ядром галактики IRAS 13224-3809. Считается, что там располагается сверхмассивная черная дыра, расчищающая окружающее пространство от материи. Результаты исследований опубликованы в журнале Nature, кратко о них рассказывает «Лента.ру».
Механизм эмиссии рентгеновских лучей активными ядрами галактик изучен относительно хорошо, однако геометрия короны, где это излучение возникает, до сих пор не вполне понятна. В данной работе ученые попробовали проанализировать реверберацию рентгеновского излучения, чтобы прояснить устройство внутреннего края аккреционного диска, образованного вращающейся вокруг черной дыры материей.
Объект IRAS 13224-3809 представляет собой сейфертовскую звездную систему типа I (то есть с широкими разрешенными и узкими запрещенными спектральными линиями) c красным смещением z=0,0658. Для таких систем характерны релятивистские выбросы газа из аккреционного диска вокруг черной дыры в активном ядре галактики. Объект IRAS 13224-3809 наиболее активен в рентгеновском диапазоне, за ним наблюдали космические телескопы XMM-Newton и NuSTAR.
Сейфертовские галактики чрезвычайно похожи на квазары — одни из самых ярких объектов во Вселенной. Разница — в контрасте, определяемом как отношение светимости активного ядра галактики к светимости всей галактики. Для сейфертовской галактики контраст оценивается в двадцать процентов, тогда как для квазаров он достигает девяноста процентов.
https://icdn.lenta.ru/images/2017/03/01/19/20170301195235000/pic_625e5ae2a9eb10ca763518e340517431.jpg
Фото: ESA
Астрофизикам объект IRAS 13224-3809 хорошо известен как источник сильного релятивистского излучения. Это типично для сейфертовской звездной системой типа I. Флуоресцентное свечение возникает из-за того, что высокоэнергетическое рентгеновские лучи возбуждают атомы материи, переводя электроны на более высокие энергетические уровни. Потом система релаксирует, то есть испускает фотоны частотой, соответствующей разнице энергий между возбужденным и основным состояниями электронов в атомах.
Это позволяет выполнить элементный анализ излучающей материи. В частности, астрофизики наблюдали линии испускания железа, а в спектрах — характерный комптоновский горб. В свою очередь спектроскопия излучения, отраженного от плоскости внутреннего края аккреционного диска, указывает на высокую степень изгиба светового пучка вблизи горизонта событий (его не может покинуть никакая частица) черной дыры — эффект общей теории относительности.
Изучение рентгеновской реверберации, задержки между непрерывным и отраженным излучением, дает информацию об устройстве внутреннего края аккреционного диска. С другой стороны, яркость активного галактического ядра определяется попадающей в него из окружающего пространства материей, тогда как скорость поглощения материи аккреционным диском определяется яркостью ядра — типичный пример петли обратной связи, посредством которой расположенные в активных центрах сверхмассивные черные дыры регулируют рост галактик.
https://icdn.lenta.ru/images/2017/03/01/19/20170301195307814/pic_8d55287156479fd678f80c1728233b00.jpg
Главным средством этого выступают ветры.
Фото: Aurore Simonnet, Sonoma State University / Swift / NASA
Отток газовой материи (в форме космического ветра) высвобождает огромное количество энергии в межзвездную среду, потенциально очищая окружающее активный центр галактики пространство. Скорость космических ветров превышает десять тысяч километров в секунду и достигает для объекта IRAS 13224-3809 71 тысячи километров в секунду — 0,236 скорости света в вакууме. Сами потоки частиц при этом распространяются на нескольких сотен гравитационных радиусов (сфера, ограниченная горизонтом событий) от черной дыры.
Рентгеноспектральные сигнатуры ветра регистрируются одновременно детекторами частиц низких и высоких энергий, что предполагает существование единого ионизированного оттока, связанного с низко- и высокоэнергетическими линиями поглощения. Таким образом, показано, что для окружающего сверхмассивную черную дыру пространства, в частности аккреционного диска, решающими являются два фактора — космический ветер и рентгеновское излучение.
Это также позволяет отследить аккреционные процессы, происходящие на различных расстояниях от черной дыры, — рентгеновское излучение в пределах нескольких гравитационных радиусов черной дыры, которое дополнительно ионизирует ветер, распространяющийся на сотни гравитационных радиусов от объекта.
Лентa.Ru
02.03.2017, 09:22
https://lenta.ru/articles/2017/02/09/imbh/
00:04, 9 февраля 2017
Доказано существование невозможного типа черных дыр
https://icdn.lenta.ru/images/2017/02/08/12/20170208123800809/detail_81fff6078db381a4b89477f09545d0e7.jpg
Черная дыра средней массы в центре 47 Тукана (в представлении художника)
Изображение: B. Kiziltan & T. Karacan
Американские и австралийские астрофизики обнаружили кандидата в черные дыры средней массы. Такое название они получили потому, что тяжелее обычных — то есть формирующихся в результате гравитационного коллапса звезд — объектов, но легче сверхмассивных черных дыр, как правило расположенных в активных ядрах крупных галактик. Происхождение необычных объектов до сих пор остается неясным. «Лента.ру» рассказывает о черных дырах промежуточных масс и об открытии ученых.
Большинство известных ученым черных дыр — то есть объектов, покинуть пределы которых не способна (в пренебрежение квантовыми эффектами) никакая материя, — являются либо черными дырами звездной массы, либо сверхмассивными черными дырами. Происхождение этих гравитационных объектов астрономам примерно ясно. Первые, как ясно из их названия, представляют собой конечный этап эволюции тяжелых светил, когда в их недрах прекращаются термоядерные реакции. Они настолько тяжелы, что не превращаются ни в белых карликов, ни в нейтронные звезды.
Небольшие звезды, подобные Солнцу, превращаются в белых карликов. У них сила гравитационного сжатия уравновешивается электромагнитным отталкиванием электронно-ядерной плазмы. У более тяжелых звезд гравитация сдерживается давлением ядерной материи, в результате чего возникают нейтронные звезды. Сердцевина таких объектов сформирована нейтронной жидкостью, которую покрывает тонкий плазменный слой электронов и тяжелых ядер. Наконец, самые тяжелые светила превращаются в черные дыры, что прекрасно описывается общей теорией относительности и статистической физикой.
https://icdn.lenta.ru/images/2017/02/08/12/20170208123253539/pic_514046ea0a99403f090314f61313f08c.jpg
Шаровое звездное скопление 47 Тукана
Фото: NASA / ESA / Hubble Heritage
Предельное значение массы белого карлика, не дающее ему превратиться в нейтронную звезду, в 1932 году оценил индийский астрофизик Субраманьян Чандрасекар. Этот параметр вычисляется из условия равновесия вырожденного электронного газа и сил гравитации. Современное значение предела Чандрасекара оценивается примерно в 1,4 солнечной массы. Верхнее ограничение на массу нейтронной звезды, при которой она не превращается в черную дыру, получило название предела Оппенгеймера-Волкова. Оно определяется из условия равновесия давления вырожденного нейтронного газа и сил гравитации. В 1939 году ученые получили его значение в 0,7 солнечной массы, современные его оценки варьируются от 1,5 до 3,0.
Самые массивные звезды в 200-300 раз тяжелее Солнца. Как правило, масса черной дыры, произошедшей из звезды, не превышает этот порядок. На другом конце шкалы находятся сверхмассивные черные дыры — они тяжелее Солнца в сотни тысяч или даже десятки миллиардов раз. Обычно такие монстры расположены в активных центрах крупных галактик и оказывают определяющее на них влияние. Несмотря на то что происхождение сверхмассивных черных дыр также вызывает много вопросов, к настоящему времени обнаружено достаточно много таких объектов (более строго — кандидатов в них), чтобы не сомневаться в их существовании.
Например, в центре Млечного Пути, на расстоянии 7,86 килопарсека от Земли, находится самый тяжелый объект в Галактике — сверхмассивная черная дыра Стрелец A*, которая более чем в четыре миллиона раз тяжелее Солнца. В соседней крупной звездной системе — Туманности Андромеды —находится еще более тяжелый объект: сверхмассивная черная дыра, которая, вероятно, в 140 миллионов раз тяжелее Солнца. По оценкам астрономов, примерно через четыре миллиарда лет сверхмассивная черная дыра из Туманности Андромеды поглотит таковую из Млечного Пути.
https://icdn.lenta.ru/images/2017/02/08/12/20170208124029431/pic_414881b36c64fd0f2686156833c1477c.jpg
Черная дыра средней массы (в представлении художника)
Изображение: CfA / M. Weiss
Данный механизм указывает на наиболее вероятный способ формирования гигантских черных дыр — они просто поглощают всю окружающую их материю. Однако остается вопрос: существуют ли в природе черные дыры промежуточных масс — между звездными и сверхтяжелыми? Наблюдения последних лет, в том числе и опубликованное в недавнем выпуске журнала Nature, подтверждают это. В публикации авторы сообщили об обнаружении в центре шарового звездного скопления 47 Тукана (NGC 104) вероятного кандидата в черные дыры средней массы. Как показывают оценки, она тяжелее Солнца примерно в 2,2 тысячи раз.
Скопление 47 Тукана расположено на расстоянии 13 тысяч световых лет от Земли в созвездии Тукан. Эту совокупность гравитационно связанных светил отличает большой возраст (12 миллиардов лет) и крайне высокая среди подобных объектов яркость (уступает лишь омеге Центавра). NGC 104 содержит тысячи звезд, ограниченных условной сферой диаметром 120 световых лет (это на три порядка меньше диаметра диска Млечного Пути). Также в 47 Тукана присутствует около двадцати пульсаров — именно они и стали главным объектом исследования ученых.
Прежние поиски в центре NGC 104 черной дыры не увенчались успехом. Такие объекты обнаруживают себя косвенным путем, по характерному рентгеновскому излучению, исходящему от аккреционного диска вокруг них, сформированного разогретым газом. Между тем, центр NGC 104 почти не содержит газа. С другой стороны, черную дыру можно обнаружить по оказываемому ею влиянию на вращающиеся в ее окрестностях звезды — примерно так удается исследовать Стрелец A*. Однако и тут ученых подстерегала проблема — центр NGC 104 содержит слишком много звезд, чтобы можно было разобраться в их отдельных перемещениях.
https://icdn.lenta.ru/images/2017/02/08/12/20170208123550786/pic_7b2d7ec5d7e8e0a829c4649a9ef43c60.jpg
Радиотелескоп Паркса
Фото: David McClenaghan / CSIRO
Ученые попробовали обойти обе трудности, одновременно с этим не отказавшись от привычных методов обнаружения черных дыр. Сперва астрономы проанализировали динамику светил всего шарового скопления в целом, а не только тех звезд, которые близки к его центру. Для этого авторы взяли данные о динамике светил 47 Тукана, собранные в ходе наблюдений австралийской радиообсерваторией Паркса. Полученную информацию ученые использовали для компьютерного моделирования в рамках гравитационной задачи N тел. Оно показало, что в центре NGC 104 есть нечто, по своим характеристикам напоминающее черную дыру средней массы. Однако этого было недостаточно.
Проверить свои выводы исследователи решили на пульсарах — компактных остатках мертвых звезд, радиосигналы которых астрономы научились достаточно хорошо отслеживать. Если в NGC 104 есть черная дыра средней массы, то пульсары не могут быть расположены слишком близко к центру 47 Тукана — и наоборот. Как и ожидали авторы, подтвердился первый сценарий: расположение пульсаров в NGC 104 хорошо соотносится с тем, что в центре скопления есть черная дыра средней массы.
Авторы полагают, что подобного рода гравитационные объекты могут находиться и в центрах других шаровых скоплений — вероятно, там, где их уже или еще не ищут. Для этого потребуется тщательное рассмотрение каждого из таких скоплений. Какую роль играют черные дыры промежуточных масс и как они возникли? Пока это неизвестно наверняка. Несмотря на множество вариантов их дальнейшей эволюции, соавтор исследования Бюлент Кизилтан полагает, что «они могут быть изначальными семенами, выросшими в монстров, которые мы сегодня видим в центрах галактик».
Самир Д. Матур
06.05.2017, 15:47
https://postnauka.ru/faq/49337
О парадоксе Хокинга, излучении черными дырами информации и теории «пушистого клубка»
30 июня 2015
https://cdn-postnauka.netdna-ssl.com/img/2015/06/Novyj-vzgljad-na-informacionnyj-paradoks-chernyh-dyr.jpg
Художественное представление черной дыры звездной массы IGR J17091 (NASA/CXC/M.Weiss)
Опубликованное 14 июня 2015 года в Cornell University Press исследование «Модель без файервола» предлагает новый взгляд на парадокс Хокинга. Мы попросили автора исследования, профессора Самира Д. Матура, прокомментировать эту работу для англоязычного издания ИД «ПостНаука» Serious Science.
Что произошло
В недавней статье я представил модель, которая могла бы разрешить парадокс Хокинга о потере информации в черных дырах, а также сохранить классическое интуитивное понимание, что на горизонте нет файервола.
Что такое загадка Хокинга и как она решается?
Черные дыры образуются, когда материя сжимается под собственной гравитацией. После достижения определенной плотности процесс сжатия идет по нарастающей — чем плотнее материя, тем больше гравитация — до тех пор, пока вся масса звезды не будет находиться в одной точке с бесконечной плотностью. Черная дыра имеет горизонт — границу области, за которую не может вырваться даже свет. Для черной дыры с массой, равной массе Солнца, радиус горизонта составляет около 3 км.
Вопрос заключается в следующем: если что-то падает в черную дыру, то как информация об объекте в принципе может когда-либо из нее выйти? В теории струн было установлено, что черные дыры ведут себя как «пушистые клубки» — объекты, обладающие поверхностью, как планеты, вместо вакуумной области, которую в классической теории мы ожидаем обнаружить вокруг горизонта. С этой поверхности исходит излучение, и информация также выходит наружу.
Тогда может возникнуть вопрос: что произойдет, если объект упадет на эту поверхность? Возможно, конечно, что он разрушится, точно так же, как любой объект при падении на поверхность Земли. Но есть и другая возможность: поверхность «пушистого клубка» завибрирует под воздействием падающего объекта, и эти колебания будут примерно имитировать свободное падение через пустое пространство. Такая имитация возможна потому, что в квантовой теории каждая система полностью описывается набором характеризующих частот. Если две системы имеют примерно одинаковые частоты, то они будут имитировать друг друга.
В моей работе я привожу модель, где черная дыра испускает информацию посредством радиационного излучения и при этом обеспечивает опыт «приблизительно свободного падения» сквозь ее горизонт. Мы не знаем, ведут ли себя настоящие черные дыры таким образом, но модель показывает, что недавно предложенный аргумент о файерволе имеет лазейку. Сторонники аргумента о файерволе утверждали, что если бы существовал какой-либо механизм, чтобы черная дыра излучала информацию о себе с радиацией, то поверхность, необходимая для создания этой радиации, неизбежно «сжигала» бы падающие на нее объекты. Лазейка была в том, что группа сторонников идеи файервола предположила точную имитацию падения; чего они не учли, так это того, что возможно приблизительное сходство частот, дающее имитацию свободного падения с очень хорошим приближением.
Предыстория
В 1975 году Хокинг показал, что вакуум вокруг горизонта нестабилен и излучает частицы в бесконечность. Но, когда черная дыра испаряется таким образом, у нас возникает затруднение: вся информация разрушающейся звезды идет в точку в центре, в то время как излучение выходит из-за горизонта. Таким образом, излучение не имеет никакой информации о звезде, информация потеряна. В обычной квантовой теории информация никогда не теряется, поэтому Хокинг утверждал, что черные дыры нарушают квантовую механику. Это называется информационным парадоксом черных дыр.
Некоторые люди надеялись, что квантовые гравитационные эффекты могут каким-либо образом заключать в себе информацию, что-то, что могло быть упущено в изначальном расчете Хокинга. Но в 2009 году я использовал результат квантовой теории информации, чтобы показать, что такое тонкое кодирование невозможно.
Тогда казалось бы естественным, что черная дыра должна иметь поверхность, как звезды или планеты; в этом случае излучение от этой поверхности будет нести информацию об этой поверхности. Но проблема в том, что черная дыра засасывает все внутрь и таким образом, как правило, стремится сделать область горизонта областью вакуума. Такое поведение находит отражение в вере в такой тезис: черные дыры не имеют волос, то есть они являются «лысыми», без информации на поверхности.
Идея «пушистых клубков»
В теории струн было установлено, что черные дыры имеют поверхность, эта структура называется «пушистым клубком». Эта поверхность не «засасывается в отверстие», потому что с дополнительными измерениями, присутствующими в теории струн, в пространстве-времени возникает новая топология. В новой топологии пространство-время заканчивается в непосредственной близости от места, где был бы образован горизонт, поэтому не существует никакого «внутри», куда могла бы упасть поверхность. Сингулярность также исчезает, устраняя серьезную проблему физики дыры. «Клубок» излучает со своей поверхности, как звезда, так что проблема информации решена. Представление о черной дыре как об объекте без горизонта постепенно укреплялось в последние несколько лет благодаря тяжелой работе группы во главе с Джозефом Бена и Ником Варнером. Многие характеристики «пушистых клубков» были разъяснены Стивом Авери, Боруном Чоудхури, Стефано Джусто, Олегом Луниным, Рудольфо Руссо, Масаки Шигемори и Дэвидом Тертоном.
Проблема падения
Теперь можно задать еще один вопрос: что происходит с объектом, который падает на поверхность «клубка»? Это тема нынешних дискуссий. Можно подумать, что объект разрушается, как если бы он упал на поверхность Земли. И в самом деле, некоторые люди, работающие с «клубками», говорят, что так и обстояло бы дело. Но есть вторая возможность, называемая дополнительностью, — идея, восходящая в своих ранних формах к Хофту и Сасскинду. В квантовой механике каждая система характеризуется набором частот. Таким образом, в классической картине черной дыры есть набор частот, который описывает падающие объекты. В случае с клубком не существует места, куда падать, но объект, ударяясь о поверхность, возбуждает колебания этой поверхности с другим характерным набором частот.
Что, если эти два набора частот одинаковы? Тогда информация об объекте, падающем на поверхность «клубка», может быть голографически закодирована на поверхности «клубка», и изменения этой поверхности будут воспроизводить всю динамику падения внутрь черной дыры. Таким образом, объект не будет «ощущаться» уничтоженным. Версия этого есть в идее Малдасены о двойственности калибровочной гравитации: объекты, падающие на трехмерные листы (браны), получают энергию, преобразованную в колебания этих листов, но в «двойном» описании кажется, что они продолжали падать через пустое пространство.
В 2012 году группа авторов утверждала, что картина взаимодополняемости Сасскинда нежизнеспособна. В сущности, аргумент указывал, что если динамика поверхности черной дыры точно воспроизводит физику вакуумного горизонта, то опять возникал бы парадокс Хокинга о потере информации. Если невозможна взаимодополняемость, то, как утверждают авторы, поверхность должна будет уничтожать все, что на нее падает, то есть вести себя как файервол. Но в случае с «клубками» было уже ясно, что понятие дополнительности потребует небольшой модификации. Поверхность одного «клубка» немного отличается от поверхности любого другого, если эти различия должны хранить данные о дыре. Таким образом, голограмма на поверхности «клубка» будет иметь небольшие дефекты, позволяя лишь приблизительное кодирование информации о падающем объекте.
Как я показал в работе с Дэвидом Тертоном, частоты, описывающие классическую картину черной дыры, и фактический «клубок» могут быть примерно равны, но не точно равны. Приближение становится тем лучше, чем больше размеры дыры. В моей недавней статье я построил модель, которая демонстрирует эту приблизительную голографию. Эта модель, таким образом, показывает лазейку в аргументе о файерволе: сторонники файервола утверждали, что, поскольку точная голография была невозможна, падающий объект должен чувствовать, что он сгорает. Но, так как возможна приблизительная голография, нельзя прийти к этому выводу.
Перспективы
Парадигма «пушистого клубка» предоставляет возможность разрешить различные парадоксы, возникающие в квантовой физике черных дыр. Было бы очень интересно проверить все аспекты этой парадигмы и увидеть, изменяет ли она наше понимание других особенностей гравитации, таких как сингулярность во время Большого взрыва. В черной дыре классическая физика предсказывает, что большое количество материи будет сжато в точку с бесконечной плотностью. Но теория струн говорит нам, что с квантово-механической точки зрения это не так, из-за эффектов теории струн физика полностью меняется. Когда мы прослеживаем историю нашей Вселенной вплоть до Большого взрыва, классическая теория описывает его как сжатие огромного количества материи в одну точку. Было бы очень интересно узнать, изменит ли теория струн это объяснение и даст ли ясное понимание того, каким было начало нашей Вселенной.
Автор
профессор физики Университета штата Огайо
Серге́й Бори́сович Попо́в
07.05.2017, 16:46
https://postnauka.ru/faq/7342
7 фактов об исследованиях, необходимых для доказательства существования черных дыр
6 декабря 2012
https://postnauka.ru/files/images/7/4/3/1/0/0/0/0/0/0/hVxp-tqHzfVjPaKiourEzHbiGuBJWa0S.jpg
Darwin Bell
Черные дыры как идея были придуманы довольно давно. Сделали это Лаплас и Мичелл несколько веков назад. Они догадались, что можно рассмотреть обычные ньютоновские законы (других тогда не было) и сделать очень большой вторую космическую скорость, то есть скорость, которую надо единомоментно сообщить какому-нибудь предмету, чтобы он навсегда улетел с какого-то тела, например, с Земли. Мы берем известную формулу из школьного учебника физики, – вторая космическая скорость равна квадратному корню из удвоенного произведения постоянной тяготения на массу тела, деленного на его радиус, - и видим, что мы можем или, сохраняя радиус тела, увеличивать массу, и тогда будет расти скорость, или, наоборот, сохраняя массу, сжимать это тело, с которого все улетает, и тоже будет увеличиваться скорость. В конце концов, мы дойдем до скорости света. То есть согласно этой формуле можно сделать такой объект - или такой тяжелый, или такой компактный, маленький, – что скорость убегания от него будет равна скорости света.
1
Черные дыры в современном понимании возникли уже в рамках Общей теории относительности. Там картина немного иная, и нам в дальнейшем понадобится геометрическая теория гравитации. В этой теории массивные тела искажают пространство–время вокруг себя. Обычно это иллюстрируют самым простым способом: представьте себе резиновую плоскость. Вы кладете разные предметы - чем тяжелее предмет, тем больше прогнется плоскость, и, соответственно, возникнет ямка, все объекты будут туда притягиваться. Вы просто кидаете какие-нибудь другие шарики, и они в эту ямку скатываются. Хороший образ. Действительно, так модель и выглядит, и мы думаем, что все примерно так и работает. Можно такой тяжелый предмет положить или такой маленький, что он в том месте, где лежит, настолько сильно продавит плоскость, что возникнет область пространства, которая как бы «окуклится», и из нее наружу ничего выходить не будет. Вот это и есть, в первом приближении, черная дыра в Общей теории относительности.
Черная дыра – это область пространства. У нее нет поверхности, по ней нельзя постучать-походить, есть только горизонт, граница, отделяющая недра черной дыры от остального мира. А все, что попало внутрь, уже внутри останется навсегда (хотя ниже мы поговорим об испарении черных дыр). Как дыра устроена внутри - это большой сложный вопрос (проблема в том, что у нас нет по этому поводу никаких наблюдательных данных – ведь сигналы наружу не выходят!). Есть много интересных работ на эту тему. Например, можно сделать предположение о замкнутых орбитах под горизонтом. В таком сценарии некоторые частицы не упадут в самый центр черной дыры, а будут вращаться, всегда оставаясь под горизонтом. Но если это исключить, т.к. такой вариант развития событий является экзотикой, все действительно должно сваливаться в самый центр черной дыры, и мы не знаем, что там происходит, потому что формально многие параметры достигают бесконечных значений, что означает, что наши физические законы там перестают работать.
Есть проблема: существуют ли вообще черные дыры? Потому что, во-первых, общая теория относительности, будучи хорошей стандартной теорией гравитации, заведомо неполна, все это хорошо понимают. Она хороша в определенной области применимости, и там у нее серьезных конкурентов нет, но развивать теорию гравитации необходимо, и, видимо, нам нужна теория, куда эта общая теория относительности войдет как часть. Будут ли существовать черные дыры в такой расширенной теории – вопрос.
2
Черные дыры очень трудно открыть. Она дыра и она черная – собственно, что там можно увидеть? Единственный, сразу приходящий в голову способ - это излучение Хокинга. Черные дыры должны понемногу испаряться. Но это процесс очень медленный. Обычно процесс испарения черных дыр иллюстрируют таким образом. В вакууме постоянно рождаются пары частиц. Это ничему не противоречит. Вы как бы на короткое время берете взаймы энергию, рождаете пару частиц, а потом они аннигилируют. Ну, представьте такую полукриминальную ситуацию: вы работаете в банке, и вы периодически берете деньги из кассы, а на следующий день возвращаете. Ничего не произошло, никто не знает – вы взяли на короткое время и вернули. А теперь представьте, что у вас есть рядом черная дыра. То есть, например, случился какой-то кризис: вы взяли деньги, а вернуть уже ничего не можете, у вас остался долг, и, значит, банк немножко испарился, - для внешнего наблюдателя это выглядит как испарение банка. Если есть черная дыра, рядом возникла пара частиц: одна упала в дыру, а другая улетела. Глядя на это с какого-то расстояния, мы просто увидим, что родилась частица и улетела. Единственный источник энергии для того, чтобы получить эту частицу, - это масса черной дыры. Таким образом, для внешнего наблюдателя масса дыры начинает уменьшаться.
Казалось бы, надо искать такое испарение черных дыр – вот вам и доказательство их существования! Но здесь, если мы к реалиям вернемся, проблема такова: в природе есть два основных типа черных дыр. Первый, самый известный – это черные дыры звездных масс, возникающие на финальных стадиях эволюции самых массивных звезд. Живет большая массивная звезда, она пережигает водород в гелий, гелий в углерод, азот, кислород, наконец, доходит до элементов группы железа. Дальше горение идти не может, и ядро схлопывается. Если это схлопывание ничем не остановить, образуется черная дыра. Типичная масса такого объекта раз в десять больше солнечной. Это массивная черная дыра, она испаряется очень медленно, вокруг постоянно летает какой-нибудь мусор, реликтовое излучение, и это все попадает в черную дыру, поэтому ее масса все-таки в среднем растет, испарение несущественно.
3
Второй тип черных дыр – это сверхмассивные объекты в центрах галактик. Есть два основных сценария их образования: или большие облака газа сразу схлопывались в дыры, а потом они постепенно росли, поглощая вещество из окружающего пространства; или самые первые звезды в конце своей жизни давали довольно большие, по сто-двести масс Солнца, черные дыры, и они становились зародышами для будущих сверхмассивных объектов. Мы не знаем пока, какой из сценариев верен, но существенно, что эти дыры испаряются крайне медленно, т.е. увидеть это фактически невозможно, т.к. снова масса растет из-за поглощения вещества.
Поэтому непосредственно увидеть черную дыру тяжело, и есть такой простой факт: нет никакой Нобелевской премии, выданной за открытие черных дыр. Значит, нет окончательного подтверждения. Практически все астрофизики готовы поспорить тысяча к одному, что они существуют, но полной уверенности нет. Мы наблюдаем объекты, называемые кандидатами в черные дыры. Можно изучать поведение вещества вокруг них – это пока единственный способ что-то узнать о самих дырах. Например, самая известная, самая цитируемая научная статья, когда-либо написанная в нашей стране, – это работа Николая Шакуры и Рашида Сюняева, опубликованная в 1973 году. Она посвящена течению вещества вокруг черных дыр. Это всем нужно, очень востребовано, и поэтому статья долгое время была самой цитируемой астрофизической работой в мире. Благодаря таким исследованиям мы довольно много знаем о свойствах кандидатов в черные дыры. Но все равно полной уверенности в существовании дыр нет, и, может быть, через буквально несколько лет ключевым моментом в доказательстве их существования станет обнаружение гравитационных волн.
4
Мы помним, что у нас есть геометрическая теория гравитации. И мы иллюстрируем ее резиновой плоскостью. Теперь представьте, что вы пальцем периодически тыкаете в эту плоскость. Вы тыкаете, и по ней бежит рябь. В некотором смысле это и есть гравитационные волны. В принципе, даже если вы станете просто размахивать руками, вы будете испускать гравитационные волны, потому что руки массивны, они как-то искажают пространство вокруг себя, вы ими двигаете, и по пространству бежит рябь. Но это очень слабый эффект. Сильный эффект достигается, если мы имеем быстро двигающиеся массивные и достаточно компактные объекты, потому что нужен не просто тяжелый объект, нужно в данном месте очень сильно исказить пространство-время и быстро менять гравитационное поле. Именно черные дыры - идеальный объект для таких целей.
Чтобы возникало существенное гравитационное излучение, нужна определенная асимметрия в движении тела, или само тело, если оно вращается, должно быть несимметричным. Например, вращающийся вокруг короткой оси огурец подойдет. Но черные дыры – это довольно симметричны объекты. Вращающаяся вокруг своей оси одиночная черная дыра ничего излучать не будет, нужна какая-то асимметрия. К счастью, в природе есть подходящие процессы с участием черных дыр. Они происходят в двойных системах.
Звезды чаще всего рождаются не поодиночке, а парами. Например, пусть возникла пара из двух массивных звезд. Затем обе поочередно взорвались как сверхновые и дали две черных дыры, и они крутятся друг вокруг друга. Представим, как два шарика катаются по нашей резиновой плоскости - от них обязательно побежит рябь. В случае пары черных дыр это очень хороший процесс для испускания гравитационных волн, потому что у нас сразу есть большие массы, заключенные в компактные области и двигающиеся с огромными скоростями.
5
Вспомним, что если мы берем любой предмет и кидаем его в черную дыру, он пересекает горизонт со скоростью света. Значит, у него в этот момент колоссальная скорость и энергия. Теперь представим такой экстремальный случай: мы берем одну черную дыру и кидаем в другую черную дыру. Вроде бы должна выделиться куча энергии, и она выделяется! Но только в виде чего? Вся эта огромная энергия выделяется в виде гравитационных волн. Если в системе сливаются две черные дыры, то возникает очень мощный гравитационно-волновой сигнал. Вот его как раз хотят поймать, и, наверное, в ближайшее время это самый реалистичный, самый хороший способ открыть черные дыры.
6
Одним подобным открытием ученые убьют двух зайцев сразу. Во-первых, будет напрямую доказано существование гравитационных волн. Ведь пока у нас есть пусть и очень хорошее, но лишь косвенное подтверждение: астрономы наблюдают тесную двойную систему, но не из двух черных дыр, а из двух нейтронных звезд. Одна из них излучает, как пульсар, т.к. мы как бы имеем в этой двойной системе очень точные часы, посылающие нам регулярные сигналы. Изучая вариации времени прихода этих сигналов, мы понимаем, что эти нейтронные звезды в этой двойной системе сближаются. И единственный разумный механизм, который это все объясняет, - гравитационные волны. Они уносят энергию и угловой момент из системы, что и приводит к уменьшению размера орбиты. За это открытие дали Нобелевскую премию, поскольку это отличная проверка предсказаний Общей теории относительности и лучшее на сегодняшний день косвенное подтверждение существования гравитационных волн.
Но если ученые все-таки зафиксируют сигнал от слияния черных дыр, то, во-первых, мы напрямую увидим сигнал, докажем, что есть гравитационные волны, что геометрическая теория гравитации верна. Это будет очень важно для фундаментальной физики. И, во-вторых, одновременно мы откроем черные дыры, потому что это будет действительно взаимодействие двух горизонтов. Сигнал от процесса слияния позволит сказать, что у взаимодействующих объектов нет твердых поверхностей. Две дыры сольются, образуют единую дыру, ее горизонт будет дрожать какое-то время, от этого также можно зарегистрировать гравитационно-волновой сигнал. Поэтому задачи, связанные с регистрацией гравитационных волн, являются очень важными и перспективными.
7
Как ученые собираются это осуществить? Когда гравитационная волна где-то проходит, она сжимает-растягивает все на своем пути. Эффект слабый, но измеримый. Вначале, еще в 70-е гг. 20 века, ученые пытались ставить металлические болванки, увешанные датчиками, и смотреть, как они будут сжиматься-растягиваться. Это были не очень чувствительные детекторы, поэтому сейчас разработаны и созданы другие. Представьте, на расстоянии нескольких километров друг от друга в тоннеле, где создан вакуум, висят тяжелые зеркала. Между зеркалами бегает лазерный луч. Когда проходит гравитационная волна, зеркала немного смещаются друг относительно друга, и это можно заметить. Заставляя лазерные лучи взаимодействовать друг с другом, мы получаем интерференционную картинку, которая изменяется, если сдвигаются зеркала. Есть надежда, что спустя сто лет после создания Общей теории относительности, примерно в 2015-2016-м году, слияния черных дыр будут обнаружены. Тогда будет доказано существование гравитационных волн, и мы одновременно получим надежное подтверждение существования черных дыр.
Автор
доктор физико-математических наук, ведущий научный сотрудник ГАИШ МГУ
Максим Руссо
09.12.2020, 10:57
https://polit.ru/article/2019/04/11/ps_black_hole/
11 апреля 2019, 07:00
https://b.radikal.ru/b12/2101/68/4c9089a4f869.jpg
Черная дыра в галактике Мессье 87. Это первое в истории фото черной дырыЧерная дыра в галактике Мессье 87. Это первое в истории фото черной дыры
Event Horizon Telescope Collaboration/National Science Foundation
Представьте, что вам известен человек, которого вы никогда не видели воочию, но много знаете о его поступках, лично наблюдали результаты его действий, слышали о нем от знакомых и настолько хорошо узнали его, что можете даже предсказать, что он сделает в той или иной ситуации. Такое положение сохраняется много лет, но вдруг наступает день, когда вам показывают фотографию этого, с одной стороны, никогда вами не виденного, а с другой – уже хорошо знакомого человека. Именно это произошло 10 апреля, когда астрономы продемонстрировали миру первое в истории прямое изображение черной дыры и ее тени.
Каким бы странным это ни показалось, формально черные дыры до сих пор оставались неоткрытыми, в ранге гипотезы. Я еще помню, как астрономы говорили, что в центре той или иной галактики находится «возможная черная дыра» или «объект – кандидат в черные дыры». Но с годами накапливалась всё больше наблюдений, которые могли быть объяснены только наличием черных дыр. Уверенность ученых росла, и постепенно оговорки были оставлены.
Хотя далеко не все детали физических свойств черных дыр и их эволюции уже объяснены астрофизиками, о черных дырах известно уже многое. Мы знаем о двух типах черных дыр.
Первые находятся в тесных двойных системах и обнаруживаются по потоку вещества, падающего в черную дыру со второго компонента системы – звезды. Вещество в данном случае образует так называемый аккреционный диск и разогревается до высоких температур, так что астрономы регистрируют испускаемое этим диском излучение. Такие черные дыры невелики, их масса обычно составляет несколько масс Солнца. Совсем недавно появился еще один метод обнаружения черных дыр звездной массы – регистрация гравитационных волн, возникающих, когда две черные дыры сливаются в одну.
Другие черные дыры значительно крупнее, в миллионы и даже в десятки миллиардов масс Солнца. Такие черные дыры находятся в центрах галактик (точнее, в центрах галактик, имеющих балдж – «вздутие» в середине галактического диска). Сверхмассивные черные дыры тоже втягивают в себя окружающее вещество, формируя аккреционный диск. Благодаря таким дискам центры галактик со сверхмассивными черными дырами имеют огромную светимость, иногда она в десятки или даже сотни раз может превосходить светимость всех звезд такой галактики, как Млечный путь. Именно по этому излучению их и обнаружили в конце 1950-х – начале 1960-х годов. Тогда ученые еще не успели понять, с чем имеют дело, и назвали открытые объекты квазарами (квазизвездными радиоисточниками).
В 1963 году голландский астроном Мартин Шмидт сумел объяснить спектры квазаров, обнаружив в них красное смещение, что позволило определить расстояния до них. Оказалось, что квазары – не только самые яркие, но и самые далекие известные астрономам объекты, находящиеся в миллиардах световых лет от Солнечной системы. Объяснить огромную энергию квазаров смогли Яков Зельдович и Эдвин Солпитер, предположившие, что ее источниками служат аккреционные диски сверхмассивных черных дыр.
https://a.radikal.ru/a12/2012/a2/779d62129278.jpg
Так черную дыру в центре гигантской эллиптической галактики М87 изобразил художник (ESO/M. Kornmesser)
Следить за сверхмассивными черными дырами можно, наблюдая за поведением объектов (звезд, облаков газа) в их окрестностях. Такие наблюдения позволяют с довольно высокой точностью определить массу черной дыры. Сейчас известно уже довольно много таких черных дыр в центрах разных галактик. Более того, астрономы предполагают, что сверхмассивная черная дыра имеется в центре любой галактики с достаточно крупным балджем. Есть черная дыра и в центре Млечного пути, ее масса, составляющая около четырех миллионов масс Солнца, вычислена по движению окружающих звезд.
Еще одна хорошо знакомая астрономам сверхмассивная черная дыра находится в центре эллиптической галактики M87 в созвездии Девы. Она значительно крупнее «нашей» черной дыры (около 6,5 миллиардов масс Солнца, по этому показателю она уступает лишь черным дырам в галактиках NGC 3842 и NGC 4889 с массами в 9,7 и 27 миллиардов масс Солнца), но находится на куда большем расстоянии – примерно 55 миллионов световых лет. Диск из ионизированного газа вокруг этой черной дыры вращается со скоростью около 1000 километров в секунду, а его диаметр равен примерно 0,39 световых лет.
Именно черная дыра галактики M87 была выбрана для получения первого в истории науки изображения черной дыры. Хотя девиз «Pics or It Didn'tHappen» в науке не действует, задача увидеть черную дыру земными телескопами показалась достаточно интересной, чтобы приложить значительные усилия. Конечно, не может быть и речи о том, чтобы объект, пусть и колоссально яркий, но находящийся в другой галактике за десятки миллиардов световых лет от нас, можно было увидеть в оптический телескоп. Черную дыру собирались рассматривать в радиодиапазоне.
Но и для одного радиотелескопа такая задача была слишком сложна. Дело в том, что угловая разрешающая способность радиотелескопа определяется отношением длины волны к диаметру антенны. Чем меньше это отношение, тем более близкие друг к другу объекты способен различать телескоп. Соответственно, увеличивая диаметр параболической антенны, можно улучшать эту характеристику телескопа. Но даже у телескопов с самыми большими антеннами она остается небольшой. Их угловое разрешение редко превышает 1 угловую минуту, что примерно соответствует зоркости невооруженного глаза. И излучение от двух или более радиоисточников, расположенных близко друг от друга, радиотелескоп воспринимает как один источник.
Радиоастрономы уже давно решили эту проблему. Они создали радиоинтерферометры – системы из нескольких радиотелескопов, связанных между собой и работающих синхронизировано. В таком случае угловая разрешающая способность определяется не диаметром зеркала одного телескопа, а расстоянием между телескопами (так называемой базой радиоинтерферометра).
С появлением радиоинтерферометров радиоастрономия резко обогнала по разрешающей способности оптическую астрономию. Появились и радиоинтерферометры со сверхдлинной базой (РСДБ, Very Long Baseline Interferometry, VLBI). Они объединяют радиотелескопы, разнесенные на тысячи километров и находящиеся в разных странах, а часто и на разных континентах. Излучение, принятое на каждом из них, записывается и обрабатывается в едином центре.
Именно такой радиоинтерферометр был создан для получения изображения черной дыры в галактике M87. Он получил название «Телескоп горизонта событий» (Event Horizon Telescope, EHT) и объединил восемь наземных радиотелескопов: ALMA (Чили, Европейская Южная обсерватория), APEX (Чили, Европейская Южная обсерватория), 30-метровый телескоп IRAM (Сьерра-Невада, Испания), телескоп Джеймса Клерка Максвелла (Мауна-Кеа, Гавайи), Большой миллиметровый телескоп Альфонсо Серрано (Сьерра-Негра, Мексика), Субмиллиметровая решетка (Мауна-Кеа, Гавайи), Субмиллиметровый телескоп (Аризона, США) и телескоп на Южном полюсе (станция Амундсен – Скотт, Антарктида). В работе этой научной коллаборации участвовали более 200 исследователей.
https://b.radikal.ru/b20/2101/ad/dc2f865c6019.jpg
Карта расположения телескопов, участвовавших в наблюдениях M87 в рамках проекта EHT в 2017 году. В 2018 году в состав EHT вошел радиотелескоп в Гренландии. Еще два телескопа, находящиеся во Франции и в Аризоне, присоединятся к проекту в 2020 году.
Интерферометр работал на частоте 1,3 мм и достиг углового разрешения 20 миллисекунд. Чтобы наглядно продемонстрировать эту величину, ученые говорят, что в оптическом диапазоне такое разрешение позволило бы читать нью-йоркскую газету из парижского кафе.
При работе восьми радиотелескопов в режиме гигантского интерферометра необходимо с большой точностью синхронизировать данные, полученные каждым из них. Для этого были использованы атомные часы (водородный мазер). В ходе наблюдательной кампании 2017 года каждый радиотелескоп в день получал 350 терабайт данных. Они записывались на специальные жесткие диски и отправлялись в Институт радиоастрономии Общества Макса Планка в Бонне и Обсерваторию Хэйстек (Массачусетский технологический институт), где находятся корреляторы – специальные суперкомпьютеры, которые обрабатывали полученные сигналы и в конечном итоге преобразовывали их в изображение.
Полученный результат был представлен в серии из шести статей, опубликованных в специальном выпуске The Astrophysical Journal Letters, а также на нескольких пресс-конференциях, проведенных в разных странах научными учреждениями, участвовавшими в проекте EHT.
https://a.radikal.ru/a30/2101/cd/297efeedafbc.jpg
Первое изображение черной дыры
«Когда черная дыра погружена в яркий диск светящегося газа, там должна образоваться темная область, напоминающая тень. Это явление, предсказываемое общей теорией относительности Эйнштейна, никогда раньше не наблюдалось, – рассказал глава Научного совета EHT Хейно Фальке (Heino Falcke) из университета Рэдбуд в Нидерландах. – Эта "тень", образующаяся вследствие гравитационного искривления света и его захвата горизонтом событий, многое говорит о природе этих удивительных объектов. Именно она и позволила нам измерить гигантскую массу черной дыры в M87». Граница самой черной дыры – так называемый «горизонт событий» – примерно в 2,5 раза меньше тени. В черной дыре галактики M87 он имеет диаметр чуть около 40 миллиардов километров.
Из-за огромного расстояния, отделяющего наблюдателей от черной дыры, видимый размер тени черной дыры M87 составляет всего 42 угловых микросекунды (тут ученые вновь прибегли к наглядным сравнениям, сопоставив это с видимым размером кредитной карты, лежащей на поверхности Луны), а размер горизонта событий равен лишь семи микросекундам.
Постнаука
21.05.2024, 04:40
BfKMiJHx8K4&t
https://www.youtube.com/watch?v=BfKMiJHx8K4&t=7193s
4 560 395 просмотров 27 янв. 2019 г.
Все о физике компактных объектов за 3 часа
Нейтронные звезды и черные дыры являются финальными стадиями эволюции массивных звезд. Эти компактные объекты не только обладают интереснейшими астрофизическими проявлениями, но и представляют огромный интерес для фундаментальной физики. Недаром за исследования нейтронных звезд было вручено уже две с половиной нобелевских премии (за открытие радиопульсаров, за обнаружение двойного пульсара и проверку ОТО, а также сюда можно отнести как минимум половину премии за развитие рентгеновской астрономии). В курсе рассматриваются различные источники, связанные с нейтронными звездами и черными дырами, эволюция нейтронных звезд, а также перспективы исследований в этой области.
Содержание видео:
0:10 Жизнь звезды
14:07 Эволюция нейтронных звезд
25:40 Радиопульсары
33:27 Магнитары
47:46 Недра нейтронных звезд
55:29 Свойства двойных звезд
1:09:50 Релятивистские двойные звезды
1:22:18 Гравитационные волны
1:32:30 Черные дыры
1:39:12 Скорости компактных объектов
1:54:04 Одиночные компактные объекты
2:08:23 Великое объединение нейтронных звезд
2:22:49 Компактные объекты и фундаментальная физика
Это видео собрано из материалов курса астрофизика Сергея Попова «Нейтронные звезды и черные дыры». Расшифровки и дополнительные материалы читайте здесь: https://postnauka.ru/courses/17745
Сергей Попов — доктор физико-математических наук, ведущий научный сотрудник ГАИШ МГУ
Поддержать ПостНауку — https://postnauka.ru/donate/
Больше лекций, интервью и статей о фундаментальной науке и ученых, которые ее создают, смотрите на сайте http://postnauka.ru/. ПостНаука — все, что вы хотели знать о науке, но не знали, у кого спросить.
Следите за нами в социальных сетях:
VK: https://vk.com/postnauka
FB:
/ postnauka
Twitter:
/ postnauka
Одноклассники: https://ok.ru/postnauka
Telegram: https://t.me/postnauka
vBulletin® v3.8.4, Copyright ©2000-2026, Jelsoft Enterprises Ltd. Перевод: zCarot